- Pushed limit switch active high option (i.e. NC switches).
- Updated defaults.h to be in-line with the new settings.
- Refactored feed hold handling and step segment buffer to be more
generalized in effort to make adding feedrate overrides easier in the
future. Also made it a little more clean.
- Fixed G18 plane select issue. Now ZX-plane, rather than XZ-plane, per
right hand rule.
- Cleaned some of the system settings by more accurately renaming some
of the variables and removing old obsolete ones.
- Declared serial.c rx_buffer_tail to be volatile. No effect, since
avr-gcc automatically does this during compilation. Helps with porting
when using other compilers.
- Updated version number to v0.9b.
- Updates to README.md
- Overhauled the stepper algorithm and planner again. This time
concentrating on the decoupling of the stepper ISR completely. It is
now dumb, relying on the segment generator to provide the number of
steps to execute and how fast it needs to go. This freed up lots of
memory as well because it made a lot tracked variables obsolete.
- The segment generator now computes the velocity profile of the
executing planner block on the fly in floating point math, instead of
allowing the stepper algorithm to govern accelerations in the previous
code. What this accomplishes is the ability and framework to (somewhat)
easily install a different physics model for generating a velocity
profile, i.e. s-curves.
- Made some more planner enhancements and increased efficiency a bit.
- The changes also did not increase the compiled size of Grbl, but
decreased it slightly as well.
- Cleaned up a lot of the commenting.
- Still much to do, but this push works and still is missing feedholds
(coming next.)
- Returned the max step rate to 30kHz. The new arc algorithm works uses
so much less CPU overhead, because the segments are longer, that the
planner has no problem computing through them.
- Fixed an issue with the acceleration independence scaling. Should now
work with accelerations above 400mm/sec^2 or so.
- Updated README
- Arc mm_per_segment parameter was removed and replaced with an
arc_tolerance parameter, which scales all arc segments automatically to
radius, such that the line segment error doesn't exceed the tolerance.
Significantly improves arc performance through larger radius arc,
because the segments are much longer and the planner buffer has more to
work with.
- Moved n_arc correction from the settings to config.h. Mathematically
this doesn't need to be a setting anymore, as the default config value
will work for all known CNC applications. The error does not accumulate
as much anymore, since the small angle approximation used by the arc
generation has been updated to a third-order approximation and how the
line segment length scale with radius and tolerance now. Left in
config.h for extraneous circumstances.
- Corrected the st.ramp_count variable (acceleration tick counter) to a
8-bit vs. 32-bit variable. Should make the stepper algorithm just a
touch faster overall.
- Maximum velocity for each axis is now configurable in settings. All
rapids/seek move at these maximums. All feed rates(including rapids)
may be limited and scaled down so that no axis does not exceed their
limits.
- Moved around auto-cycle start. May change later, but mainly to ensure
the planner buffer is completely full before cycle starting a streaming
program. Otherwise it should auto-start when there is a break in the
serial stream.
- Reverted old block->max_entry_speed_sqr calculations. Feedrate
overrides not close to ready at all.
- Fixed intermittent slow trailing steps for some triangle velocity
profile moves. The acceleration tick counter updating was corrected to
be exact for that particular transition. Should be ok for normal
trapezoidal profiles.
- Fixed the Timer0 disable after a step pulse falling edge. Thanks
@blinkenlight!
- Planner execute speed has been more than halved from 4ms to 1.9ms
when computing a plan for a single line segment during arc generation.
This means that Grbl can now run through an arc (or complex curve)
twice as fast as before without starving the buffer. For 0.1mm arc
segments, this means about the theoretical feed rate limit is about
3000mm/min for arcs now.
- Increased the Ranade timer frequency to 30kHz, as there doesn't seem
to be any problems with increasing the frequency. This means that the
maximum step frequency is now back at 30kHz.
- Added Zen Toolworks 7x7 defaults.
- Brand-new stepper algorithm. Based on the Pramod Ranade inverse time
algorithm, but modified to ensure step events are exact. Currently
limited to about 15kHz step rates, much more to be done to enable 30kHz
again.
- Removed Timer1. Stepper algorithm now uses Timer0 and Timer2.
- Much improved step generation during accelerations. Smoother. Allows
much higher accelerations (and speeds) than before on the same machine.
- Cleaner algorithm that is more easily portable to other CPU types.
- Streamlined planner calculations. Removed accelerate_until and
final_rate variables from block buffer since the new stepper algorithm
is that much more accurate.
- Improved planner efficiency by about 15-20% during worst case
scenarios (arcs).
- New config.h options to tune new stepper algorithm.
- The homing sequence is now a compile-time option, where a user can
choose which axes(s) move in sequence during the search phase. Up to 3
sequences. Works with the locating phase and the pull-off maneuver.
- New defaults.h file to store user generated default settings for
different machines. Mainly to be used as a central repo, but each set
may be select to be compiled in as a config.h define.
- Added Grbl state (Idle, Running, Queued, Hold, etc) to the real-time
status reporting feature as feedback to the user of what Grbl is doing.
Updated the help message to reflect this change.
- Removed switches (dry run, block delete, single block mode). To keep
Grbl simple and not muddled up from things that can easily be taken
care of by an external interface, these were removed.
- Check g-code mode was retained, but the command was moved to '$C'
from '$S0'.
- Refactored system states to be more clear and concise. Alarm locks
processes when position is unknown to indicate to user something has
gone wrong.
- Changed mc_alarm to mc_reset, which now manages the system reset
function. Centralizes it.
- Renamed '$X' kill homing lock to kill alarm lock.
- Created an alarm error reporting method to clear up what is an alarm:
message vs a status error: message. For GUIs mainly. Alarm codes are
negative. Status codes are positive.
- Serial baud support upto 115200. Previous baudrate calc was unstable
for 57600 and above.
- Alarm state locks out all g-code blocks, including startup scripts,
but allows user to access settings and internal commands. For example,
to disable hard limits, if they are problematic.
- Hard limits do not respond in an alarm state.
- Fixed a problem with the hard limit interrupt during the homing
cycle. The interrupt register is still active during the homing cycle
and still signal the interrupt to trigger when re-enabled. Instead,
just disabled the register.
- Homing rate adjusted. All axes move at homing seek rate, regardless
of how many axes move at the same time. This is unlike how the stepper
module does it as a point to point rate.
- New config.h settings to disable the homing rate adjustment and the
force homing upon powerup.
- Reduced the number of startup lines back down to 2 from 3. This
discourages users from placing motion block in there, which can be very
dangerous.
- Startup blocks now run only after an alarm-free reset or after a
homing cycle. Does not run when $X kill is called. For satefy reasons
- Added some more notes to config.h.
- Added the ability to override some of the #defines around Grbl in
config.h, like planner buffer size, line buffer size, serial
send/receive buffers. Mainly to centralize the configurations to be
able to port to different microcontrollers later.
- Removed the dry run switch. It was getting overly complicated for
what it needed to do. In practice, single block mode and feed rate
overrides (coming in next release) does a much better job with dry runs
than 'dry run'.
- Trimmed all of Grbl's messages from help, status, feedback to
settings. Saved 0.6KB+ of flash space that could be used for v0.9
features.
- Removed some settings inits when set. Will depend on user to power
cycle to get some of these to reload.
- Fixed a bug with settings version not re-writing old settings, when
it should. Thanks Alden!
- Increased the number of startup blocks to 3 for no good reason other
than it doesn't increase the flash size.
- Removed the purge buffer command and replaced with an disable homing
lock command.
- Homing now blocks all g-code commands (not system commands) until the
homing cycle has been performed or the disable homing lock is sent.
Homing is required upon startup or if Grbl loses it position. This is
for safety reasons.
- Cleaned up some of the Grbl states and re-organized it to be little
more cohesive.
- Cleaned up the feedback and status messages to not use so much flash
space, as it's a premium now.
- Check g-code and dry run switches how are mutually exclusive and
can't be enabled when the other is. And automatically resets Grbl when
disabled.
- Some bug fixes and other minor tweaks.
- Pinned out cycle start(A2), feed hold(A1), and reset(A0) runtime
commands. These pins are held high with the internal pull-up resistor
enabled. All you have to do is connect a normally-open switch to the
pin and ground. That's it.
- Moved the coolant control pins to A3 (and the optional mist control
to A4).
- Moved all of the MASK defines into the config.h file to centralize
them.
(All v0.8 features installed. Still likely buggy, but now thourough
testing will need to start to squash them all. As soon as we're done,
this will be pushed to master and v0.9 development will be started.
Please report ANY issues to us so we can get this rolled out ASAP.)
- User startup script! A user can now save one (up to 5 as compile-time
option) block of g-code in EEPROM memory. This will be run everytime
Grbl resets. Mainly to be used as a way to set your preferences, like
G21, G54, etc.
- New dry run and check g-code switches. Dry run moves ALL motions at
rapids rate ignoring spindle, coolant, and dwell commands. For rapid
physical proofing of your code. The check g-code switch ignores all
motion and provides the user a way to check if there are any errors in
their program that Grbl may not like.
- Program restart! (sort of). Program restart is typically an advanced
feature that allows users to restart a program mid-stream. The check
g-code switch can perform this feature by enabling the switch at the
start of the program, and disabling it at the desired point with some
minimal changes.
- New system state variable. This state variable tracks all of the
different state processes that Grbl performs, i.e. cycle start, feed
hold, homing, etc. This is mainly for making managing of these task
easier and more clear.
- Position lost state variable. Only when homing is enabled, Grbl will
refuse to move until homing is completed and position is known. This is
mainly for safety. Otherwise, it will let users fend for themselves.
- Moved the default settings defines into config.h. The plan is to
eventually create a set of config.h's for particular as-built machines
to help users from doing it themselves.
- Moved around misc defines into .h files. And lots of other little
things.
NOTE: Another incremental update. Likely buggy, still a ways to go
before everything is installed, such as startup blocks.
- Changed the '$' command to print help. '$$' now prints Grbl settings.
The help now instructs the user of runtime commands, switch toggling,
homing, etc. Jogging will be added to these in v0.9.
- Added switches: block delete, opt stop, and single block mode.
- Now can print the g-code parser state and persistent parameters
(coord sys) to view what Grbl has internally.
- Made the gc struct in the g-code parser global to be able to print
the states. Also moved coordinate system tracking from sys to gc struct.
- Changed up the welcome flag and updated version to v0.8c.
- Removed spindle speed from gcode parser. Not used.
(NOTE: This push is likely buggy so proceed with caution. Just
uploading to let people know where we're going.)
- New report.c module. Moved all feedback functions into this module to
centralize these processes. Includes realtime status reports, status
messages, feedback messages.
- Official support 6 work coordinate systems (G54-G59), which are
persistently held in EEPROM memory.
- New g-code support: G28.1, G30.1 stores current machine position as a
home position into EEPROM. G10 L20 Px stores current machine position
into work coordinates without needing to explicitly send XYZ words.
- Homing performed with '$H' command. G28/G30 no longer start the
homing cycle. This is how it's supposed to be.
- New settings: Stepper enable invert and n_arc correction installed.
- Updated and changed up some limits and homing functionality. Pull-off
travel will now move after the homing cycle regardless of hard limits
enabled. Fixed direction of pull-off travel (went wrong way).
- Started on designing an internal Grbl command protocol based on the
'$' settings letter. Commands with non numeric characters after '$'
will perform switch commands, homing cycle, jogging, printing
paramters, etc. Much more to do here.
- Updated README to reflect all of the new features.
- Reorganized all of the status message feedback from both the g-code
parser and settings modules to be centralized into two message modules:
status feedback from executing a line and warnings for misc feedback.
- Pulled out the printPgmString() messages in settings.c and placed it
into the new module. (settings_dump() not moved).
- Some other minor edits. Renaming defines, comment updates, etc.
- Fixed a bug that would not disable the steppers if a user issues a
system abort during a homing cycle.
- Updated the hard limit interrupt to be more correct and to issue a
shutdown for the right situations when the switch has been triggered.
- Added a status message to indicate to the user what happened and what
to do upon a hard limit trigger.
- Thank you statement added for Alden Hart of Synthetos.
- Hard limits option added, which also works with homing by pulling off
the switches to help prevent unintended triggering. Hard limits use a
interrupt to sense a falling edge pin change and immediately go into
alarm mode, which stops everything and forces the user to issue a reset
(Ctrl-x) or reboot.
- Auto cycle start now a configuration option.
- Alarm mode: A new method to kill all Grbl processes in the event of
something catastrophic or potentially catastropic. Just works with hard
limits for now, but will be expanded to include g-code errors (most
likely) and other events.
- Updated status reports to be configurable in inches or mm mode. Much
more to do here, but this is the first step.
- New settings: auto cycle start, hard limit enable, homing direction
mask (which works the same as the stepper mask), homing pulloff
distance (or distance traveled from homed machine zero to prevent
accidental limit trip).
- Minor memory liberation and calculation speed ups.
- Homing cycle will now cycle twice (spec more/less in config) to
improve repeatability and accuracy by decreasing overshoot.
- New Grbl settings added: Enable/disable homing cycles, homing seek
and feed rates, switch debounce delay, and stepper idle lock time.
- Please note that these settings may change upon the next push, since
there will be more added soon. Grbl *should* not re-write your old
settings, just re-write the new ones. So, make sure you keep these
written down somewhere in case they get lost from a code bug.
- Refactored settings migration to be a little smaller and managable
going forward.
- Limit pin internal pull-resistors now enabled. Normal high operation.
This will be the standard going forward.
- Updated all of the 'double' variable types to 'float' to reflect what
happens when compiled for the Arduino. Also done for compatibility
reasons to @jgeisler0303 's Grbl simulator code.
- G-code parser will now ignore 'E' exponent values, since they are
reserved g-code characters for some machines. Thanks @csdexter!
- The read_double() function was re-written and optimized for use in
Grbl. The strtod() avr lib was removed.
- Added acceleration to the homing routine.
- Homing now accounts for different step rates when moving multiple
axes without exceeding acceleration limits.
- Homing now updates all internal positioning variables to machine zero
after completion.
- "Poor-man's" debounce delay added.
- Updated the delay_us() function to perform faster and more accurate
microsecond delays. Previously, the single increments would add
noticeable time drift for larger delays.
- Fix a bug in the stepper.c prescalar calculations that was changed in
the last commit.
- Other minor fixes.
- Added coolant control! Flood control (M8) functions on analog pin 0.
Mist control (M7) is compile-time optional and is on analog pin 1. (Use
only if you have multiple coolants on your system). Based on work by
@openpnp.
- Fixed some variable assignments in spindle control.
Added a compile-time only experimental feature that creates a
user-specified time delay between a step pulse and a direction pin set
(in config.h). This is for users with hardware-specific issues
(opto-couplers) that need more than a few microseconds between events,
which can lead to slowly progressing step drift after many many
direction changes. We suggest to try the hack/fix posted in the Wiki
before using this, as this experimental feature may cause Grbl to take
a performance hit at high step rates and about complex curves.
- Updated makefile to be more universally compatible by not requiring
grep or ruby.
- Edited XON/XOFF flow control usage, noting that FTDI-based Arduinos
are known to work, but not Atmega8U2-based Arduino. Still officially
not supported, but added for advanced users.
- Minor edits.
- A latency issue related to USB-to-serial converters on the Arduino
does not allow for XON/XOFF flow control to work correctly on standard
terminal programs. It seems that only specialized UI's or avoiding the
USB port all together solves this problem. However, XON/XOFF flow
control is added for advanced users only as a compile-time option. This
feature is officially *NOT* supported by grbl, but let us know of any
successes with it!
- G54 work coordinate system support. Up to 6 work coordinate systems
(G54-G59) available as a compile-time option.
- G10 command added to set work coordinate offsets from machine
position.
- G92/G92.1 position offsets and cancellation support. Properly follows
NIST standard rules with other systems.
- G53 absolute override now works correctly with new coordinate systems.
- Revamped g-code parser with robust error checking. Providing user
feedback with bad commands. Follows NIST standards.
- Planner module slightly changed to only expected position movements
in terms of machine coordinates only. This was to simplify coordinate
system handling, which is done solely by the g-code parser.
- Upon grbl system abort, machine position and work positions are
retained, while G92 offsets are reset per NIST standards.
- Compiler compatibility update for _delay_us().
- Updated README.
- Program stop support (M0,M1*,M2,M30*). *Optional stop to be done.
*Pallet shuttle not supported.
- Work position is set equal to machine position upon reset, as
according to NIST RS274-NGC guidelines. G92 is disabled.
- Renamed mc_set_current_position() to mc_set_coordinate_offset().
- Fixed bug in plan_synchronize(). Would exit right before last step is
finished and caused issues with program stops. Now fixed.
- Spindle now stops upon a run-time abort command.
- Updated readme and misc upkeeping.
- Fixed a premature step end bug dating back to Simen's 0.7b edge
version is fixed, from which this code is forked from. Caused by Timer2
constantly overflowing calling the Step Reset Interrupt every 128usec.
Now Timer2 is always disabled after a step end and should free up some
cycles for the main program. Could be more than one way to fix this
problem. I'm open to suggestions.
- _delay_ms() refactored to accept only constants to comply with
current compilers. square() removed since not available with some
compilers.
- Added machine position reporting to status queries. This will be
further developed with part positioning/offsets and maintaining
location upon reset.
- System variables refactored into a global struct for better
readability.
- Removed old obsolete Ruby streaming scripts. These were no longer
compatible. Updated Python streaming scripts.
- Fixed printFloat() and other printing functions.
- Decreased planner buffer back to 18 blocks and increased TX serial
buffer to 64 bytes. Need the memory space for future developments.
- Begun adding run-time modes to grbl, where block delete toggle, mm/in
reporting modes, jog modes, etc can be set during runtime. Will be
fleshed out and placed into EEPROM when everything is added.
- ALPHA status. - Multitasking ability with run-time command executions
for real-time control and feedback. - Decelerating feed hold and resume
during operation. - System abort/reset, which immediately kills all
movement and re-initializes grbl. - Re-structured grbl to easily allow
for new features: Status reporting, jogging, backlash compensation. (To
be completed in the following releases.) - Resized TX/RX serial buffers
(32/128 bytes) - Increased planner buffer size to 20 blocks. - Updated
documentation.
- Fleshed out the original idea to completely remove the long slope at
the end of deceleration issue. This third time should absolutely
eliminate it.
- Changed the acceleration setting to kept as mm/min^2 internally,
since this was creating unneccessary additional computation in the
planner. Human readable value kept at mm/sec^2.
- Updated grbl version 0.7d and settings version to 4. NOTE: Please
check settings after update. These may have changed, but shouldn't.
- Before updating the new features (pause, e-stop, federate override,
etc), the edge branch will soon be merged with the master, barring any
immediate issues that people may have, and the edge branch will be the
testing ground for the new grbl version 0.8.
- Added another way to further ensure the long slope deceleration issue
is eliminated. If the stepper rate change is too great near zero, the
stepper rate is adjusted at half increments to the end of travel,
creating a smooth transition. - If the new STEPPER_IDLE_LOCK_TIME is
set as zero, this delay is not compiled at compile-time. - NOTE: The
next update is likely going to be major, involving a full re-write of
the stepper.c program to integrate a simple way to apply pauses,
jogging, e-stop, and feedrate overrides. The interface should be
flexible enough to be easily modified for use with either hardware
switches or software commands. Coming soon.
Added a very short (25 ms) user-definable delay before the steppers are
disabled at the motors are disabled and grbl goes idle. This ensures
any residual inertia at the end of the last motion does not cause the
axes to drift and grbl to lose its position when manually entering
g-code or when performing a tool change and starting the next
operation.
- The long standing issue of a long slope at deceleration is likely
fixed. The stepper program was not tracking and timing the end of
acceleration and start of deceleration exactly and now is fixed to
start and stop on time. Also, to ensure a better acceleration curve fit
used by the planner, the stepper program delays the start of the
accelerations by a half trapezoid tick to employ the midpoint rule. -
Settings version 3 migration (not fully tested, but should work) -
Added a MINIMUM_PLANNER_SPEED user-defined parameter to planner to let
a user change this if problems arise for some reason. - Moved all
user-definable #define parameters into config.h with clear comments on
what they do and recommendations of how to change them. - Minor
housekeeping.
- Fixed the planner TODO regarding minimum nominal speeds. Re-arranged
calculations to be both more efficient and guaranteed to be greater
than zero. - Missed a parenthesis location on the rate_delta
calculation. Should fix a nearly in-perceptible issue with incorrect
acceleration ramping in diagonal directions. - Increased maximum dwell
time from 6.5sec to an 18hour max. A crazy amount more, but that's how
the math works out. - Converted the internal feedrate values to mm/min
only, as it was switching between mm/min to mm/sec and back to mm/min.
Also added a feedrate > 0 check in gcode.c. - Identified the long slope
at the end of rapid de/ac-celerations noted by stephanix. Problem with
the numerical integration truncation error between the exact solution
of estimate_acceleration_distance and how grbl actually performs the
acceleration ramps discretely. Increasing the
ACCELERATION_TICKS_PER_SECOND in config.h helps fix this problem.
Investigating further.