- Restored probe position syncing. Had removed a pull-off motion after
a probe cycle completes, but ended up de-synchronizing the g-code
parser and probing cycle positions. Putting the pull-off motion back
fixed the problem.
- Probing cycle would drop into a QUEUED state, if multiple G38.2 are
sent. It would not honor the auto cycle start flags. To fix, the auto
cycle start state is saved at the beginning of the probing cycle and
restored at the end, since the feed hold it uses to stop a triggered
probe will disable the auto start flag. For now it’s a patch, rather
than a permanent fix.
- protocol_buffer_synchronize() also has a failure case. Auto cycle
start does not get executed when the system is waiting in here, so if
it’s in a QUEUED state already, it won’t resume. Patched here, but not
fully resolved.
- Fixed a problem with the “view build info” command. The EEPROM write
would do weird things and corrupt the EEPROM. Not sure exactly what
caused it, but it’s likely a compiler problem with an improperly
defined EEPROM address. It didn’t have enough room to store a full
string. To fix, the build info EEPROM range was increased and the max
number of STARTUP_BLOCKS was reduced to 2 from 3.
- Lastly, when a $I view build info is used for the first time, it
would normally show an EEPROM read error, since it wasn’t cleared or
wasn’t therein the first place. It will now not show that error. A
patch rather than a permanent fix again.
- Bug fix for step and direction invert masks not immediately being in
effect. Now regenerates the masks when a user changes this setting.
- Bug fix for probing cycle. G-code standard mandates that there is an
error if the probe is already triggered when the cycle is commanded.
However, Grbl may have motions to pull off a previous probing cycle in
queue and can falsely lead to errors. To fix this, the triggered check
is performed within the probing cycle itself, right after the planner
buffer is synced. If there is an error, it will now alarm out as a
probe fail.
This is likely the last major change to the v0.9 code base before push
to master. Only two minor things remain on the agenda (CoreXY support,
force clear EEPROM, and an extremely low federate bug).
- NEW! Grbl is now compile-able and may be flashed directly through the
Arduino IDE. Only minor changes were required for this compatibility.
See the Wiki to learn how to do it.
- New status reporting mask to turn on and off what Grbl sends back.
This includes machine coordinates, work coordinates, serial RX buffer
usage, and planner buffer usage. Expandable to more information on user
request, but that’s it for now.
- Settings have been completely renumbered to allow for future new
settings to be installed without having to constantly reshuffle and
renumber all of the settings every time.
- All settings masks have been standardized to mean bit 0 = X, bit 1 =
Y, and bit 2 = Z, to reduce confusion on how they work. The invert
masks used by the internal Grbl system were updated to accommodate this
change as well.
- New invert probe pin setting, which does what it sounds like.
- Fixed a probing cycle bug, where it would freeze intermittently, and
removed some redundant code.
- Homing may now be set to the origin wherever the limit switches are.
Traditionally machine coordinates should always be in negative space,
but when limit switches on are on the opposite side, the machine
coordinate would be set to -max_travel for the axis. Now you can always
make it [0,0,0] via a compile-time option in config.h. (Soft limits
routine was updated to account for this as well.)
- Probe coordinate message immediately after a probing cycle may now
be turned off via a compile-time option in config.h. By default the
probing location is always reported.
- Reduced the N_ARC_CORRECTION default value to reflect the changes in
how circles are generated by an arc tolerance, rather than a fixed arc
segment setting.
- Increased the incoming line buffer limit from 70 to 80 characters.
Had some extra memory space to invest into this.
- Fixed a bug where tool number T was not being tracked and reported
correctly.
- Added a print free memory function for debugging purposes. Not used
otherwise.
- Realtime rate report should now work during feed holds, but it hasn’t
been tested yet.
- Updated the streaming scripts with MIT-license and added the simple
streaming to the main stream.py script to allow for settings to be sent.
- Some minor code refactoring to improve flash efficiency. Reduced the
flash by several hundred KB, which was re-invested in some of these new
features.
- Denoted bit_true_atomic only for sys.execute bit settings. All other
bit_true type calls are for local variables only and don’t need atomic
access. Still looking into other ways of setting these flags without
requiring atomic access, but this is a patch for now.
- Completely overhauled the g-code parser. It’s now 100%* compliant. (*
may have some bugs). Being compliant, here are some of the major
differences.
- SMALLER and JUST AS FAST! A number of optimizations were found that
sped things up and allowed for the more thorough error-checking to be
installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and
still was able to make it significantly smaller than it was.
- No default feed rate setting! Removed completely! This doesn’t exist
in the g-code standard. So, it now errors out whenever it’s undefined
for motions that require it (G1/2/3/38.2).
- Any g-code parser error expunges the ENTIRE block. This means all
information is lost and not passed on to the running state. Before some
of the states would remain, which could have led to some problems.
- If the g-code block passes all of the error-checks, the g-code state
is updated and all motions are executed according to the order of
execution.
- Changes in spindle speed, when already running, will update the
output pin accordingly. This fixes a bug, where it wouldn’t update the
speed.
- Update g-code parser error reporting. Errors now return detailed
information of what exact went wrong. The most common errors return a
short text description. For less common errors, the parser reports
‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs
and their descriptions will be documented for user reference elsewhere
to save flash space.
- Other notable changes:
- Added a print integer routine for uint8 variables. This saved
significant flash space by switching from a heavier universal print
integer routine.
- Saved some flash space with our own short hypotenuse calculation
- Some arc computation flash and memory optimizations.
- G38.2 straight probe now supported. Rough draft. May be tweaked more
as testing ramps up.
- G38.2 requires at least one axis word. Multiple axis words work too.
When commanded, the probe cycle will move at the last ‘F’ feed rate
specified in a straight line.
- During a probe cycle: If the probe pin goes low (normal high), Grbl
will record that immediate position and engage a feed hold. Meaning
that the CNC machine will move a little past the probe switch point, so
keep federates low to stop sooner. Once stopped, Grbl will issue a move
to go back to the recorded probe trigger point.
- During a probe cycle: If the probe switch does not engage by the time
the machine has traveled to its target coordinates, Grbl will issue an
ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe
without error isn’t supported, but would be easy to implement later.)
- After a successful probe, Grbl will send a feedback message
containing the recorded probe coordinates in the machine coordinate
system. This is as the g-code standard on probe parameters specifies.
- The recorded probe parameters are retained in Grbl memory and can be
viewed with the ‘$#’ print parameters command. Upon a power-cycle, not
a soft-reset, Grbl will re-zero these values.
- Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses
EEPROM to fetch the coordinate system offsets.
- Updated the Grbl version to v0.9d.
- The probe cycle is subject to change upon testing or user-feedback.
- Updated some of the ifdefs when disabling line numbers feature.
Getting messy with this compile-time option. This will likely get
cleaned up later.
- This is just a push to get the new probing code to compile. Testing
and optimization of the code will soon follow and be pushed next.
- Added a grbl planner simulation tool that was written in Matlab and
Python. It was used to visualize the inner workings of the planner as a
program is streamed to it. The simulation assumes that the planner
buffer is empty, then filled, and kept filled. This is mainly for users
to see how the planner works.
- Updated some of the compile-time ifdefs when enabling line numbers.
The leaving the un-used line numbers in the function calls eats a
non-neglible amount of flash memory. So the new if-defs remove them.
- Changed line number integer types from unsigned to signed int32.
G-code mandates values cannot exceed 99999. Negative values can be used
to indicate certain modes.
- Homing cycle line number changed to -1, as an indicator.
- Fixed a reporting define for the spindle states that was broken by
the last merge.
WARNING: There are still some bugs to be worked out. Please use caution
if you test this firmware.
- Feed holds work much better, but there are still some failure
conditions that need to be worked out. This is the being worked on
currently and a fix is planned to be pushed next.
- Homing cycle refactoring: Slight adjustment of the homing cycle to
allow for limit pins to be shared by different axes, as long as the
shared limit pins are not homed on the same cycle. Also, removed the
LOCATE_CYCLE portion of the homing cycle configuration. It was
redundant.
- Limit pin sharing: (See above). To clear up one or two limit pins for
other IO, limit pins can now be shared. For example, the Z-limit can be
shared with either X or Y limit pins, because it’s on a separate homing
cycle. Hard limit will still work exactly as before.
- Spindle pin output fixed. The pins weren’t getting initialized
correctly.
- Fixed a cycle issue where streaming was working almost like a single
block mode. This was caused by a problem with the spindle_run() and
coolant_run() commands and issuing an unintended planner buffer sync.
- Refactored the cycle_start, feed_hold, and other runtime routines
into the runtime command module, where they should be handled here
only. These were redundant.
- Moved some function calls around into more appropriate source code
modules.
- Fixed the reporting of spindle state.
- Added a new source and header file called system. These files contain
the system commands and variables, as well as all of the system headers
and standard libraries Grbl uses. Centralizing some of the code.
- Re-organized the include headers throughout the source code.
- ENABLE_M7 define was missing from config.h. Now there.
- SPINDLE_MAX_RPM and SPINDLE_MIN_RPM now defined in config.h. No
uncommenting to prevent user issues. Minimum spindle RPM now provides
the lower, near 0V, scale adjustment, i.e. some spindles can go really
slow so why use up our 256 voltage bins for them?
- Remove some persistent variables from coolant and spindle control.
They were redundant.
- Removed a VARIABLE_SPINDLE define in cpu_map.h that shouldn’t have
been there.
- Changed the DEFAULT_ARC_TOLERANCE to 0.002mm to improve arc tracing.
Before we had issues with performance, no longer.
- Fixed a bug with the hard limits and the software debounce feature
enabled. The invert limit pin setting wasn’t honored.
- Fixed a bug with the homing direction mask. Now is like it used to
be. At least for now.
- Re-organized main.c to serve as only as the reset/initialization
routine. Makes things a little bit clearer in terms of execution
procedures.
- Re-organized protocol.c as the overall master control unit for
execution procedures. Not quite there yet, but starting to make a
little more sense in how things are run.
- Removed updating of old settings records. So many new settings have
been added that it’s not worth adding the code to migrate old user
settings.
- Tweaked spindle_control.c a bit and made it more clear and consistent
with other parts of Grbl.
- Tweaked the stepper disable bit code in stepper.c. Requires less
flash memory.
- Homing travel calculations fixed. It was computing the min travel
rather than max.
- Auto-start disable and pausing after spindle or dwell commands.
Related to plan_synchronize() function call. Now fixed, but still need
to work on the system state.
- Pushed a fix to make this branch more Arduino IDE compatible. Removed
extern call in nuts_bolts.c
- Updated the stepper configuration option of enabling or disabling the
new Adaptive Multi-Axis Step Smoothing Algorithm. Now works either way.
- Updated some copyright info.
- NEW! An active multi-axis step smoothing algorithm that automatically
adjusts dependent on step frequency. This solves the long standing
issue to aliasing when moving with multiple axes. Similar in scheme to
Smoothieware, but more advanced in ensuring a more consistent CPU
overhead throughout all frequencies while maintaining step exactness.
- Switched from Timer2 to Timer0 for the Step Port Reset Interrupt.
Mainly to free up hardware PWM pins.
- Seperated the direction and step pin assignments, so we can now move
them to seperate ports. This means that we can more easily support 4+
axes in the future.
- Added a setting for inverting the limit pins, as so many users have
request. Better late than never.
- Bug fix related to EEPROM calls when in cycle. The EEPROM would kill
the stepper motion. Now protocol mandates that the system be either in
IDLE or ALARM to access or change any settings.
- Bug fix related to resuming the cycle after a spindle or dwell
command if auto start has been disabled. This fix is somewhat temporary
or more of a patch. Doesn’t work with a straight call-response
streaming protocol, but works fine with serial buffer pre-filling
streaming that most clients use.
- Renamed the pin_map.h to cpu_map.h to more accurately describe what
the file is.
- Pushed an auto start bug fix upon re-initialization.
- Much more polishing to do!
- Changed up mc_line to accept an array rather than individual x,y,z
coordinates. Makes some of the position data handling more effective,
especially for a 4th-axis later on.
- Changed up some soft limits variable names.
- Returned the max step rate to 30kHz. The new arc algorithm works uses
so much less CPU overhead, because the segments are longer, that the
planner has no problem computing through them.
- Fixed an issue with the acceleration independence scaling. Should now
work with accelerations above 400mm/sec^2 or so.
- Updated README
- Arc mm_per_segment parameter was removed and replaced with an
arc_tolerance parameter, which scales all arc segments automatically to
radius, such that the line segment error doesn't exceed the tolerance.
Significantly improves arc performance through larger radius arc,
because the segments are much longer and the planner buffer has more to
work with.
- Moved n_arc correction from the settings to config.h. Mathematically
this doesn't need to be a setting anymore, as the default config value
will work for all known CNC applications. The error does not accumulate
as much anymore, since the small angle approximation used by the arc
generation has been updated to a third-order approximation and how the
line segment length scale with radius and tolerance now. Left in
config.h for extraneous circumstances.
- Corrected the st.ramp_count variable (acceleration tick counter) to a
8-bit vs. 32-bit variable. Should make the stepper algorithm just a
touch faster overall.
- Maximum velocity for each axis is now configurable in settings. All
rapids/seek move at these maximums. All feed rates(including rapids)
may be limited and scaled down so that no axis does not exceed their
limits.
- Moved around auto-cycle start. May change later, but mainly to ensure
the planner buffer is completely full before cycle starting a streaming
program. Otherwise it should auto-start when there is a break in the
serial stream.
- Reverted old block->max_entry_speed_sqr calculations. Feedrate
overrides not close to ready at all.
- Fixed intermittent slow trailing steps for some triangle velocity
profile moves. The acceleration tick counter updating was corrected to
be exact for that particular transition. Should be ok for normal
trapezoidal profiles.
- Fixed the Timer0 disable after a step pulse falling edge. Thanks
@blinkenlight!
- The homing sequence is now a compile-time option, where a user can
choose which axes(s) move in sequence during the search phase. Up to 3
sequences. Works with the locating phase and the pull-off maneuver.
- New defaults.h file to store user generated default settings for
different machines. Mainly to be used as a central repo, but each set
may be select to be compiled in as a config.h define.
- Added Grbl state (Idle, Running, Queued, Hold, etc) to the real-time
status reporting feature as feedback to the user of what Grbl is doing.
Updated the help message to reflect this change.
- Removed switches (dry run, block delete, single block mode). To keep
Grbl simple and not muddled up from things that can easily be taken
care of by an external interface, these were removed.
- Check g-code mode was retained, but the command was moved to '$C'
from '$S0'.
- Refactored system states to be more clear and concise. Alarm locks
processes when position is unknown to indicate to user something has
gone wrong.
- Changed mc_alarm to mc_reset, which now manages the system reset
function. Centralizes it.
- Renamed '$X' kill homing lock to kill alarm lock.
- Created an alarm error reporting method to clear up what is an alarm:
message vs a status error: message. For GUIs mainly. Alarm codes are
negative. Status codes are positive.
- Serial baud support upto 115200. Previous baudrate calc was unstable
for 57600 and above.
- Alarm state locks out all g-code blocks, including startup scripts,
but allows user to access settings and internal commands. For example,
to disable hard limits, if they are problematic.
- Hard limits do not respond in an alarm state.
- Fixed a problem with the hard limit interrupt during the homing
cycle. The interrupt register is still active during the homing cycle
and still signal the interrupt to trigger when re-enabled. Instead,
just disabled the register.
- Homing rate adjusted. All axes move at homing seek rate, regardless
of how many axes move at the same time. This is unlike how the stepper
module does it as a point to point rate.
- New config.h settings to disable the homing rate adjustment and the
force homing upon powerup.
- Reduced the number of startup lines back down to 2 from 3. This
discourages users from placing motion block in there, which can be very
dangerous.
- Startup blocks now run only after an alarm-free reset or after a
homing cycle. Does not run when $X kill is called. For satefy reasons
- Fixed a minor issue where the seek rates would not immediately be
used and only would after a reset. Should update live now.
- A full circle IJ offset CCW arc would not do anything. Fixed bug via
a simple if-then statement.
- Radius mode tweaks to check for negative value in sqrt() rather than
isnan() it. Error report updated to indicate what actually happened.
- Increased the number of startup blocks to 3 for no good reason other
than it doesn't increase the flash size.
- Removed the purge buffer command and replaced with an disable homing
lock command.
- Homing now blocks all g-code commands (not system commands) until the
homing cycle has been performed or the disable homing lock is sent.
Homing is required upon startup or if Grbl loses it position. This is
for safety reasons.
- Cleaned up some of the Grbl states and re-organized it to be little
more cohesive.
- Cleaned up the feedback and status messages to not use so much flash
space, as it's a premium now.
- Check g-code and dry run switches how are mutually exclusive and
can't be enabled when the other is. And automatically resets Grbl when
disabled.
- Some bug fixes and other minor tweaks.
- Added a purge buffer (and lock) command. This is an advanced option
to clear any queued blocks in the buffer in the event of system
position being lost or homed. These queued blocks will likely not move
correctly if not purged. In typical use, the purging command releases
the homing axes lock in case a user need to move the axes off their
hard limit switches, but position is not guaranteed. Homing is advised
immediately after.
- Created a system-wide sync current position function. Cleans up some
of the repetitive tasks in various places in the code that do the same
thing.
- Removed the clear all switches command '$S'. Not really needed and
helped clean up a sync call.
- Other minor tweaks. Readme updated slightly..
(All v0.8 features installed. Still likely buggy, but now thourough
testing will need to start to squash them all. As soon as we're done,
this will be pushed to master and v0.9 development will be started.
Please report ANY issues to us so we can get this rolled out ASAP.)
- User startup script! A user can now save one (up to 5 as compile-time
option) block of g-code in EEPROM memory. This will be run everytime
Grbl resets. Mainly to be used as a way to set your preferences, like
G21, G54, etc.
- New dry run and check g-code switches. Dry run moves ALL motions at
rapids rate ignoring spindle, coolant, and dwell commands. For rapid
physical proofing of your code. The check g-code switch ignores all
motion and provides the user a way to check if there are any errors in
their program that Grbl may not like.
- Program restart! (sort of). Program restart is typically an advanced
feature that allows users to restart a program mid-stream. The check
g-code switch can perform this feature by enabling the switch at the
start of the program, and disabling it at the desired point with some
minimal changes.
- New system state variable. This state variable tracks all of the
different state processes that Grbl performs, i.e. cycle start, feed
hold, homing, etc. This is mainly for making managing of these task
easier and more clear.
- Position lost state variable. Only when homing is enabled, Grbl will
refuse to move until homing is completed and position is known. This is
mainly for safety. Otherwise, it will let users fend for themselves.
- Moved the default settings defines into config.h. The plan is to
eventually create a set of config.h's for particular as-built machines
to help users from doing it themselves.
- Moved around misc defines into .h files. And lots of other little
things.
(NOTE: This push is likely buggy so proceed with caution. Just
uploading to let people know where we're going.)
- New report.c module. Moved all feedback functions into this module to
centralize these processes. Includes realtime status reports, status
messages, feedback messages.
- Official support 6 work coordinate systems (G54-G59), which are
persistently held in EEPROM memory.
- New g-code support: G28.1, G30.1 stores current machine position as a
home position into EEPROM. G10 L20 Px stores current machine position
into work coordinates without needing to explicitly send XYZ words.
- Homing performed with '$H' command. G28/G30 no longer start the
homing cycle. This is how it's supposed to be.
- New settings: Stepper enable invert and n_arc correction installed.
- Updated and changed up some limits and homing functionality. Pull-off
travel will now move after the homing cycle regardless of hard limits
enabled. Fixed direction of pull-off travel (went wrong way).
- Started on designing an internal Grbl command protocol based on the
'$' settings letter. Commands with non numeric characters after '$'
will perform switch commands, homing cycle, jogging, printing
paramters, etc. Much more to do here.
- Updated README to reflect all of the new features.
- Installed a new 'alarm' method to centralize motion kills across
alarm or reset events. Right now, this is controlled by system abort
and hard limits. But, in the future, a g-code parser error may call
this too as a safety feature.
- Re(re)organized status messages to just print all errors, regardless
from where it was called. This centralizes them into one place.
- Misc messages method installed for any user feedback that is not a
confirmation or error. Mainly so that there is a place to perform
warnings and such.
- New stuff installed and still made the flash size smaller by saving
flash space from clearing out repeated '\r\n' pgmstrings.
- Fixed a bug where hard limits message would print everytime a system
abort was sent.