presumably fixed the feed rate computation

This commit is contained in:
Simen Svale Skogsrud 2009-02-04 14:01:24 +01:00
parent 7f9a9d27e2
commit d012440518
6 changed files with 47 additions and 32 deletions

View File

@ -21,7 +21,7 @@
#ifndef config_h
#define config_h
#define VERSION "0.1"
#define VERSION "0.0"
#define X_STEPS_PER_MM 5.0
#define Y_STEPS_PER_MM 5.0
@ -64,9 +64,6 @@
#define BAUD_RATE 19200
// Unrolling the arc code is faster, but consumes about 830 extra bytes of code space.
// #define UNROLLED_ARC_LOOP
#define STEP_MASK (1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT)
#define DIRECTION_MASK (1<<X_DIRECTION_BIT)|(1<<Y_DIRECTION_BIT)|(1<<Z_DIRECTION_BIT)
#define STEPPING_MASK STEP_MASK | DIRECTION_MASK

View File

@ -34,6 +34,7 @@
#include <stdlib.h>
#include "nuts_bolts.h"
#include "stepper.h"
#include "serial_protocol.h"
#include "wiring_serial.h"
@ -50,7 +51,8 @@ struct LinearMotionParameters {
};
struct ArcMotionParameters {
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
int32_t x, y, target_x, target_y; // current position and target position in the
// local coordinate system of the arc-generator where [0,0] is the
// center of the arc.
@ -80,7 +82,6 @@ struct MotionControlState {
};
struct MotionControlState mc;
void set_stepper_directions(int8_t *direction);
inline void step_steppers(uint8_t *enabled);
inline void step_axis(uint8_t axis);
@ -118,6 +119,8 @@ void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_
// Same as mc_linear_motion but accepts target in absolute step coordinates
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate)
{
memset(&mc.linear, 0, sizeof(mc.arc));
mc.linear.target[X_AXIS] = x;
mc.linear.target[Y_AXIS] = y;
mc.linear.target[Z_AXIS] = z;
@ -149,13 +152,15 @@ void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate,
mc.pace =
(feed_rate*1000000)/mc.linear.maximum_steps;
} else {
// Ask old Phytagoras to estimate how many steps our next move is going to take us:
uint32_t steps_to_travel =
ceil(sqrt(pow((X_STEPS_PER_MM*mc.linear.step_count[X_AXIS]),2) +
pow((Y_STEPS_PER_MM*mc.linear.step_count[Y_AXIS]),2) +
pow((Z_STEPS_PER_MM*mc.linear.step_count[Z_AXIS]),2)));
// Ask old Phytagoras to estimate how many mm our next move is going to take us:
double millimeters_to_travel =
ceil(sqrt(pow((mc.linear.step_count[X_AXIS]),2) +
pow((mc.linear.step_count[Y_AXIS]),2) +
pow((mc.linear.step_count[Z_AXIS]),2)));
// Calculate the microseconds between steps that we should wait in order to travel the
// designated amount of millimeters in the amount of steps we are going to generate
mc.pace =
((steps_to_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / mc.linear.maximum_steps;
round(((millimeters_to_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / mc.linear.maximum_steps);
}
}
@ -194,6 +199,7 @@ void execute_linear_motion()
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2, double feed_rate)
{
memset(&mc.arc, 0, sizeof(mc.arc));
uint32_t radius_steps = round(radius*X_STEPS_PER_MM);
mc.mode = MC_MODE_ARC;
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
@ -216,15 +222,20 @@ void mc_arc(double theta, double angular_travel, double radius, int axis_1, int
mc.arc.y2 = 2*mc.arc.y;
// Set up a vector with the steppers we are going to use tracing the plane of this arc
clear_vector(mc.arc.plane_steppers);
mc.arc.plane_steppers[axis_1] = 1;
mc.arc.plane_steppers[axis_2] = 1;
// And map the local coordinate system of the arc onto the tool axes of the selected plane
mc.arc.axis_x = axis_1;
mc.arc.axis_y = axis_2;
// mm/second -> microseconds/step. Assumes all axes have the same steps/mm as the x axis
mc.pace =
ONE_MINUTE_OF_MICROSECONDS / (feed_rate * X_STEPS_PER_MM);
// The amount of steppings performed while tracing a full circle is equal to the sum of sides in a
// square inscribed in the circle. We use this to estimate the amount of steps as if this arc was a full circle:
uint32_t steps_in_full_circle = round(radius_steps * 4 * (1/sqrt(2)));
// We then calculate the millimeters of travel along the circumference of that same full circle
double millimeters_circumference = 2*radius*M_PI;
// Then we calculate the microseconds between each step as if we will trace the full circle.
// It doesn't matter what fraction of the circle we are actuallyt going to trace. The pace is the same.
mc.pace =
round(((millimeters_circumference * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / steps_in_full_circle);
mc.arc.incomplete = true;
}
@ -279,7 +290,6 @@ void execute_arc()
uint32_t start_x = mc.arc.x;
uint32_t start_y = mc.arc.y;
int dx, dy; // Trace directions
int8_t direction[3];
// mc.mode is set to 0 (MC_MODE_AT_REST) when target is reached
while(mc.arc.incomplete)
@ -289,9 +299,9 @@ void execute_arc()
// Take dx and dy which are local to the arc being generated and map them on to the
// selected tool-space-axes for the current arc.
direction[mc.arc.axis_x] = dx;
direction[mc.arc.axis_y] = dy;
set_stepper_directions(direction);
mc.arc.direction[mc.arc.axis_x] = dx;
mc.arc.direction[mc.arc.axis_y] = dy;
set_stepper_directions(mc.arc.direction);
if (abs(mc.arc.x)<abs(mc.arc.y)) {
step_arc_along_x(dx,dy);
@ -303,9 +313,7 @@ void execute_arc()
// Update the tool position to the new actual position
mc.position[mc.arc.axis_x] += mc.arc.x-start_x;
mc.position[mc.arc.axis_y] += mc.arc.y-start_y;
// Because of rounding errors we might be off by a step or two. Adjust for this
// To be implemented
//void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate)
// Todo: Because of rounding errors we might still be off by a step or two.
mc.mode = MC_MODE_AT_REST;
}
@ -323,8 +331,8 @@ void execute_go_home()
}
void mc_execute() {
// st_set_pace(mc.pace);
printByte('~');
st_set_pace(mc.pace);
sp_send_execution_marker();
while(mc.mode) { // Loop because one task might start another task
switch(mc.mode) {
case MC_MODE_AT_REST: break;

View File

@ -36,6 +36,12 @@ void prompt() {
line_counter = 0;
}
void sp_send_execution_marker()
{
printByte(EXECUTION_MARKER);
}
void print_result() {
double position[3];
int inches_mode;
@ -77,20 +83,18 @@ void sp_process()
char c;
while((c = serialRead()) != -1)
{
//printByte(c); // Echo
if(c == '\r') {
if(c == '\r') { // Line is complete. Then execute!
line[line_counter] = 0;
//printByte(EXECUTION_MARKER);
gc_execute_line(line);
line_counter = 0;
print_result();
prompt();
} else if (c == ' ' || c == '\t') {
// Throw away whitepace
} else if (c >= 'a' && c <= 'z') {
} else if (c == ' ' || c == '\t') { // Throw away whitepace
} else if (c >= 'a' && c <= 'z') { // Upcase lowercase
line[line_counter++] = c-'a'+'A';
} else {
line[line_counter++] = c;
}
}
}

View File

@ -25,7 +25,12 @@
// A character to acknowledge that the execution has started
#define EXECUTION_MARKER '~'
// Initialize the serial protocol
void sp_init();
// Called by motion control just before the motion starts
void sp_send_execution_marker();
// Read command lines from the serial port and execute them as they
// come in. Blocks until the serial buffer is emptied.
void sp_process();
#endif

View File

@ -100,7 +100,6 @@ void st_buffer_step(uint8_t motor_port_bits)
{
if (echo_steps) {
printByte('!'+motor_port_bits);
// printIntegerInBase(motor_port_bits,2);printByte('\r');printByte('\n');
}
int i = (step_buffer_head + 1) % STEP_BUFFER_SIZE;

View File

@ -1,3 +1,5 @@
* Use bitmasks, not vectors to build steps in motion_control
* Arcs might be a step or two off because of FP gotchas. Must add a little nudge in the end there
* Generalize feed rate code and support inverse feed rate for arcs
* Implement homing cycle in stepper.c
* Implement limit switch support in stepper.c (use port-triggered interrupts?)