grbl-LPC-CoreXY/motion_control.c
2009-02-04 14:01:24 +01:00

393 lines
15 KiB
C

/*
motion_control.c - cartesian robot controller.
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc
interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm'
and the lecture 'Circle Drawing Algorithms' by Leonard McMillan.
http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html
*/
#include <avr/io.h>
#include "config.h"
#include "motion_control.h"
#include <util/delay.h>
#include <math.h>
#include <stdlib.h>
#include "nuts_bolts.h"
#include "stepper.h"
#include "serial_protocol.h"
#include "wiring_serial.h"
#define ONE_MINUTE_OF_MICROSECONDS 60000000
// Parameters when mode is MC_MODE_ARC
struct LinearMotionParameters {
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
uint16_t feed_rate;
int32_t target[3], // The target position in absolute steps
step_count[3], // Absolute steps of travel along each axis
counter[3], // A counter used in the bresenham algorithm for line plotting
maximum_steps; // The larges absolute step-count of any axis
};
struct ArcMotionParameters {
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
int32_t x, y, target_x, target_y; // current position and target position in the
// local coordinate system of the arc-generator where [0,0] is the
// center of the arc.
int target_direction_x, target_direction_y; // signof(target_x)*angular_direction precalculated for speed
int32_t error, x2, y2; // error is always == (x**2 + y**2 - radius**2),
// x2 is always 2*x, y2 is always 2*y
uint8_t axis_x, axis_y; // maps the arc axes to stepper axes
int32_t target[3]; // The target position in absolute steps
int8_t plane_steppers[3]; // A vector with the steppers of axis_x and axis_y set to 1, the remaining 0
int incomplete; // True if the arc has not reached its target yet
};
/* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to
read, but lets us initialize the state of the system by just clearing a single, contigous block of memory.
By overlaying the variables of the different modes in a union we save a few bytes of precious SRAM.
*/
struct MotionControlState {
int8_t mode; // The current operation mode
int32_t position[3]; // The current position of the tool in absolute steps
int32_t pace; // Microseconds between each update in the current mode
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
union {
struct LinearMotionParameters linear; // variables used in MC_MODE_LINEAR
struct ArcMotionParameters arc; // variables used in MC_MODE_ARC
uint32_t dwell_milliseconds; // variable used in MC_MODE_DWELL
};
};
struct MotionControlState mc;
void set_stepper_directions(int8_t *direction);
inline void step_steppers(uint8_t *enabled);
inline void step_axis(uint8_t axis);
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
// void printCurrentPosition() {
// int axis;
// printString("[ ");
// for(axis=X_AXIS; axis<=Z_AXIS; axis++) {
// printInteger(trunc(mc.position[axis]*100));
// printByte(' ');
// }
// printString("]\n\r");
// }
//
void mc_init()
{
// Initialize state variables
memset(&mc, 0, sizeof(mc));
}
void mc_dwell(uint32_t milliseconds)
{
mc.mode = MC_MODE_DWELL;
mc.dwell_milliseconds = milliseconds;
}
// Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement.
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
{
prepare_linear_motion(trunc(x*X_STEPS_PER_MM), trunc(y*Y_STEPS_PER_MM), trunc(z*Z_STEPS_PER_MM), feed_rate, invert_feed_rate);
}
// Same as mc_linear_motion but accepts target in absolute step coordinates
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate)
{
memset(&mc.linear, 0, sizeof(mc.arc));
mc.linear.target[X_AXIS] = x;
mc.linear.target[Y_AXIS] = y;
mc.linear.target[Z_AXIS] = z;
mc.mode = MC_MODE_LINEAR;
uint8_t axis; // loop variable
// Determine direction and travel magnitude for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
mc.linear.step_count[axis] = abs(mc.linear.target[axis] - mc.position[axis]);
mc.linear.direction[axis] = signof(mc.linear.target[axis] - mc.position[axis]);
}
// Find the magnitude of the axis with the longest travel
mc.linear.maximum_steps = max(mc.linear.step_count[Z_AXIS],
max(mc.linear.step_count[X_AXIS], mc.linear.step_count[Y_AXIS]));
// Nothing to do?
if ((mc.linear.maximum_steps) == 0)
{
mc.mode = MC_MODE_AT_REST;
return;
}
// Set up a neat counter for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
mc.linear.counter[axis] = -mc.linear.maximum_steps/2;
}
// Set our direction pins
set_stepper_directions(mc.linear.direction);
// Calculate the microseconds we need to wait between each step to achieve the desired feed rate
if (invert_feed_rate) {
mc.pace =
(feed_rate*1000000)/mc.linear.maximum_steps;
} else {
// Ask old Phytagoras to estimate how many mm our next move is going to take us:
double millimeters_to_travel =
ceil(sqrt(pow((mc.linear.step_count[X_AXIS]),2) +
pow((mc.linear.step_count[Y_AXIS]),2) +
pow((mc.linear.step_count[Z_AXIS]),2)));
// Calculate the microseconds between steps that we should wait in order to travel the
// designated amount of millimeters in the amount of steps we are going to generate
mc.pace =
round(((millimeters_to_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / mc.linear.maximum_steps);
}
}
void execute_linear_motion()
{
// Flags to keep track of which axes to step
uint8_t step[3];
uint8_t axis; // loop variable
while(mc.mode) {
// Trace the line
clear_vector(step);
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
if (mc.linear.target[axis] != mc.position[axis])
{
mc.linear.counter[axis] += mc.linear.step_count[axis];
if (mc.linear.counter[axis] > 0)
{
step[axis] = true;
mc.linear.counter[axis] -= mc.linear.maximum_steps;
mc.position[axis] += mc.linear.direction[axis];
}
}
}
if (step[X_AXIS] | step[Y_AXIS] | step[Z_AXIS]) {
step_steppers(step);
} else {
mc.mode = MC_MODE_AT_REST;
}
}
}
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc,
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
// circle in millimeters. axis_1 and axis_2 selects the plane in tool space.
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2, double feed_rate)
{
memset(&mc.arc, 0, sizeof(mc.arc));
uint32_t radius_steps = round(radius*X_STEPS_PER_MM);
mc.mode = MC_MODE_ARC;
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
mc.arc.angular_direction = signof(angular_travel);
// Calculate the initial position and target position in the local coordinate system of the arc
mc.arc.x = round(sin(theta)*radius_steps);
mc.arc.y = round(cos(theta)*radius_steps);
mc.arc.target_x = trunc(sin(theta+angular_travel)*radius_steps);
mc.arc.target_y = trunc(cos(theta+angular_travel)*radius_steps);
// Precalculate these values to optimize target detection
mc.arc.target_direction_x = signof(mc.arc.target_x)*mc.arc.angular_direction;
mc.arc.target_direction_y = signof(mc.arc.target_y)*mc.arc.angular_direction;
// The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error
// <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we
// are exactly on top of the arc.
mc.arc.error = mc.arc.x*mc.arc.x + mc.arc.y*mc.arc.y - radius_steps*radius_steps;
// Because the error-value moves in steps of (+/-)2x+1 and (+/-)2y+1 we save a couple of multiplications
// by keeping track of the doubles of the arc coordinates at all times.
mc.arc.x2 = 2*mc.arc.x;
mc.arc.y2 = 2*mc.arc.y;
// Set up a vector with the steppers we are going to use tracing the plane of this arc
mc.arc.plane_steppers[axis_1] = 1;
mc.arc.plane_steppers[axis_2] = 1;
// And map the local coordinate system of the arc onto the tool axes of the selected plane
mc.arc.axis_x = axis_1;
mc.arc.axis_y = axis_2;
// The amount of steppings performed while tracing a full circle is equal to the sum of sides in a
// square inscribed in the circle. We use this to estimate the amount of steps as if this arc was a full circle:
uint32_t steps_in_full_circle = round(radius_steps * 4 * (1/sqrt(2)));
// We then calculate the millimeters of travel along the circumference of that same full circle
double millimeters_circumference = 2*radius*M_PI;
// Then we calculate the microseconds between each step as if we will trace the full circle.
// It doesn't matter what fraction of the circle we are actuallyt going to trace. The pace is the same.
mc.pace =
round(((millimeters_circumference * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / steps_in_full_circle);
mc.arc.incomplete = true;
}
#define check_arc_target \
if ((mc.arc.x * mc.arc.target_direction_y >= \
mc.arc.target_x * mc.arc.target_direction_y) && \
(mc.arc.y * mc.arc.target_direction_x <= \
mc.arc.target_y * mc.arc.target_direction_x)) \
{ mc.arc.incomplete = false; }
// Internal method used by execute_arc to trace horizontally in the general direction provided by dx and dy
void step_arc_along_x(int8_t dx, int8_t dy)
{
uint32_t diagonal_error;
mc.arc.x+=dx;
mc.arc.error += 1+mc.arc.x2*dx;
mc.arc.x2 += 2*dx;
diagonal_error = mc.arc.error + 1 + mc.arc.y2*dy;
if(abs(mc.arc.error) >= abs(diagonal_error)) {
mc.arc.y += dy;
mc.arc.y2 += 2*dy;
mc.arc.error = diagonal_error;
step_steppers(mc.arc.plane_steppers); // step diagonal
} else {
step_axis(mc.arc.axis_x); // step straight
}
check_arc_target;
}
// Internal method used by execute_arc to trace vertically in the general direction provided by dx and dy
void step_arc_along_y(int8_t dx, int8_t dy)
{
uint32_t diagonal_error;
mc.arc.y+=dy;
mc.arc.error += 1+mc.arc.y2*dy;
mc.arc.y2 += 2*dy;
diagonal_error = mc.arc.error + 1 + mc.arc.x2*dx;
if(abs(mc.arc.error) >= abs(diagonal_error)) {
mc.arc.x += dx;
mc.arc.x2 += 2*dx;
mc.arc.error = diagonal_error;
step_steppers(mc.arc.plane_steppers); // step diagonal
} else {
step_axis(mc.arc.axis_y); // step straight
}
check_arc_target;
}
// Will trace the configured arc until the target is reached.
void execute_arc()
{
uint32_t start_x = mc.arc.x;
uint32_t start_y = mc.arc.y;
int dx, dy; // Trace directions
// mc.mode is set to 0 (MC_MODE_AT_REST) when target is reached
while(mc.arc.incomplete)
{
dx = (mc.arc.y!=0) ? signof(mc.arc.y) * mc.arc.angular_direction : -signof(mc.arc.x);
dy = (mc.arc.x!=0) ? -signof(mc.arc.x) * mc.arc.angular_direction : -signof(mc.arc.y);
// Take dx and dy which are local to the arc being generated and map them on to the
// selected tool-space-axes for the current arc.
mc.arc.direction[mc.arc.axis_x] = dx;
mc.arc.direction[mc.arc.axis_y] = dy;
set_stepper_directions(mc.arc.direction);
if (abs(mc.arc.x)<abs(mc.arc.y)) {
step_arc_along_x(dx,dy);
} else {
step_arc_along_y(dx,dy);
}
}
// Update the tool position to the new actual position
mc.position[mc.arc.axis_x] += mc.arc.x-start_x;
mc.position[mc.arc.axis_y] += mc.arc.y-start_y;
// Todo: Because of rounding errors we might still be off by a step or two.
mc.mode = MC_MODE_AT_REST;
}
void mc_go_home()
{
mc.mode = MC_MODE_HOME;
}
void execute_go_home()
{
st_go_home();
st_synchronize();
clear_vector(mc.position); // By definition this is location [0, 0, 0]
mc.mode = MC_MODE_AT_REST;
}
void mc_execute() {
st_set_pace(mc.pace);
sp_send_execution_marker();
while(mc.mode) { // Loop because one task might start another task
switch(mc.mode) {
case MC_MODE_AT_REST: break;
case MC_MODE_DWELL: st_synchronize(); _delay_ms(mc.dwell_milliseconds); mc.mode = MC_MODE_AT_REST; break;
case MC_MODE_LINEAR: execute_linear_motion(); break;
case MC_MODE_ARC: execute_arc(); break;
case MC_MODE_HOME: execute_go_home(); break;
}
}
}
int mc_status()
{
return(mc.mode);
}
// Set the direction pins for the stepper motors according to the provided vector.
// direction is an array of three 8 bit integers representing the direction of
// each motor. The values should be -1 (reverse), 0 or 1 (forward).
void set_stepper_directions(int8_t *direction)
{
/* Sorry about this convoluted code! It uses the fact that bit 7 of each direction
int is set when the direction == -1, but is 0 when direction is forward. This
way we can generate the whole direction bit-mask without doing any comparisions
or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry.
*/
mc.direction_bits = (
((direction[X_AXIS]&0x80)>>(7-X_DIRECTION_BIT)) |
((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) |
((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT)));
}
// Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one
// stepper motor in the order X, Y, Z. Set the bytes of the steppers you want to step to
// 1, and the rest to 0.
inline void step_steppers(uint8_t *enabled)
{
st_buffer_step(mc.direction_bits | (enabled[X_AXIS]<<X_STEP_BIT) |
(enabled[Y_AXIS]<<Y_STEP_BIT) | (enabled[Z_AXIS]<<Z_STEP_BIT));
}
// Step only one motor
inline void step_axis(uint8_t axis)
{
switch (axis) {
case X_AXIS: st_buffer_step(mc.direction_bits | (1<<X_STEP_BIT)); break;
case Y_AXIS: st_buffer_step(mc.direction_bits | (1<<Y_STEP_BIT)); break;
case Z_AXIS: st_buffer_step(mc.direction_bits | (1<<Z_STEP_BIT)); break;
}
}
// Wait until all operations are completed
void mc_wait()
{
st_synchronize();
}