still not running, but a lot further along

This commit is contained in:
Simen Svale Skogsrud 2011-01-22 23:29:02 +01:00
parent c9df285604
commit 4103e6ca00
8 changed files with 142 additions and 93 deletions

View File

@ -49,11 +49,10 @@ void dump_settings() {
printPgmString(PSTR(" (microseconds step pulse)\r\n$4 = ")); printFloat(settings.default_feed_rate); printPgmString(PSTR(" (microseconds step pulse)\r\n$4 = ")); printFloat(settings.default_feed_rate);
printPgmString(PSTR(" (mm/min default feed rate)\r\n$5 = ")); printFloat(settings.default_seek_rate); printPgmString(PSTR(" (mm/min default feed rate)\r\n$5 = ")); printFloat(settings.default_seek_rate);
printPgmString(PSTR(" (mm/min default seek rate)\r\n$6 = ")); printFloat(settings.mm_per_arc_segment); printPgmString(PSTR(" (mm/min default seek rate)\r\n$6 = ")); printFloat(settings.mm_per_arc_segment);
printPgmString(PSTR(" (mm/min^2 max acceleration)\r\n$7 = ")); printFloat(settings.acceleration); printPgmString(PSTR(" (mm/arc segment)\r\n$7 = ")); printInteger(settings.invert_mask);
printPgmString(PSTR(" (mm/arc segment)\r\n$8 = ")); printInteger(settings.invert_mask);
printPgmString(PSTR(" (step port invert mask. binary = ")); printIntegerInBase(settings.invert_mask, 2); printPgmString(PSTR(" (step port invert mask. binary = ")); printIntegerInBase(settings.invert_mask, 2);
printPgmString(PSTR(")\r\n$9 = ")); printFloat(settings.acceleration); printPgmString(PSTR(")\r\n$8 = ")); printFloat(settings.acceleration);
printPgmString(PSTR(" (acceleration in mm/min^2)\r\n$10 = ")); printFloat(settings.max_jerk); printPgmString(PSTR(" (acceleration in mm/sec^2)\r\n$9 = ")); printFloat(settings.max_jerk);
printPgmString(PSTR(" (max instant cornering speed change in delta mm/min)")); printPgmString(PSTR(" (max instant cornering speed change in delta mm/min)"));
printPgmString(PSTR("\r\n'$x=value' to set parameter or just '$' to dump current settings\r\n")); printPgmString(PSTR("\r\n'$x=value' to set parameter or just '$' to dump current settings\r\n"));
} }
@ -83,9 +82,9 @@ void store_setting(int parameter, double value) {
case 4: settings.default_feed_rate = value; break; case 4: settings.default_feed_rate = value; break;
case 5: settings.default_seek_rate = value; break; case 5: settings.default_seek_rate = value; break;
case 6: settings.mm_per_arc_segment = value; break; case 6: settings.mm_per_arc_segment = value; break;
case 7: settings.acceleration = value; break; case 7: settings.invert_mask = trunc(value); break;
case 8: settings.invert_mask = trunc(value); break; case 8: settings.acceleration = value; break;
case 9: settings.acceleration = fabs(value); break; case 9: settings.max_jerk = fabs(value); break;
default: default:
printPgmString(PSTR("Unknown parameter\r\n")); printPgmString(PSTR("Unknown parameter\r\n"));
return; return;

View File

@ -21,7 +21,7 @@
#ifndef config_h #ifndef config_h
#define config_h #define config_h
#define VERSION "0.51" #define VERSION "0.6b"
#include <math.h> #include <math.h>
#include <inttypes.h> #include <inttypes.h>
@ -110,7 +110,7 @@ void store_setting(int parameter, double value);
// #define STEPPING_INVERT_MASK (STEP_MASK | (1<<X_DIRECTION_BIT) | (1<<Y_DIRECTION_BIT)) // #define STEPPING_INVERT_MASK (STEP_MASK | (1<<X_DIRECTION_BIT) | (1<<Y_DIRECTION_BIT))
// The temporal resolution of the acceleration management subsystem // The temporal resolution of the acceleration management subsystem
#define ACCELERATION_TICKS_PER_SECOND 10 #define ACCELERATION_TICKS_PER_SECOND 10L
// Some useful constants // Some useful constants
#define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT)) // All step bits #define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT)) // All step bits

4
main.c
View File

@ -33,15 +33,13 @@
int main(void) int main(void)
{ {
beginSerial(BAUD_RATE); sp_init(); // initialize the serial protocol
printString("A");
config_init(); config_init();
plan_init(); // initialize the stepper plan subsystem plan_init(); // initialize the stepper plan subsystem
st_init(); // initialize the stepper subsystem st_init(); // initialize the stepper subsystem
mc_init(); // initialize motion control subsystem mc_init(); // initialize motion control subsystem
spindle_init(); // initialize spindle controller spindle_init(); // initialize spindle controller
gc_init(); // initialize gcode-parser gc_init(); // initialize gcode-parser
sp_init(); // initialize the serial protocol
DDRD |= (1<<3)|(1<<4)|(1<<5); DDRD |= (1<<3)|(1<<4)|(1<<5);

View File

@ -1,4 +1,4 @@
socat -d -d READLINE /dev/tty.usbserial-A700e0GO,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1 socat -d -d READLINE /dev/tty.usbmodem24121,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1
socat -d -d READLINE /dev/tty.usbserial-A9007QcR,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1 socat -d -d READLINE /dev/tty.usbserial-A9007QcR,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1
#socat -d -d READLINE /dev/tty.FireFly-A964-SPP-1,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1 #socat -d -d READLINE /dev/tty.FireFly-A964-SPP-1,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1

View File

@ -37,8 +37,7 @@ void prompt() {
void sp_init() void sp_init()
{ {
beginSerial(BAUD_RATE); beginSerial(BAUD_RATE);
printPgmString(PSTR("\r\nGrbl ")); printPgmString(PSTR("\r\nGrbl "));
printPgmString(PSTR(VERSION)); printPgmString(PSTR(VERSION));
printPgmString(PSTR("\r\n")); printPgmString(PSTR("\r\n"));

View File

@ -36,7 +36,7 @@ void set_step_events_per_minute(uint32_t steps_per_minute);
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A) #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
#define MINIMUM_STEPS_PER_MINUTE 1200
#define CYCLES_PER_ACCELERATION_TICK ((TICKS_PER_MICROSECOND*1000000)/ACCELERATION_TICKS_PER_SECOND) #define CYCLES_PER_ACCELERATION_TICK ((TICKS_PER_MICROSECOND*1000000)/ACCELERATION_TICKS_PER_SECOND)
struct Block *current_block; // A convenience pointer to the block currently being traced struct Block *current_block; // A convenience pointer to the block currently being traced
@ -46,12 +46,16 @@ uint8_t out_bits; // The next stepping-bits to be output
int32_t counter_x, int32_t counter_x,
counter_y, counter_y,
counter_z; // counter variables for the bresenham line tracer counter_z; // counter variables for the bresenham line tracer
uint32_t iterations; // The number of iterations left to complete the current_block uint32_t step_events_left; // The number of step events left to complete the current_block
uint32_t step_event_count; // The count of step events executed in the current block
volatile int busy; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler. volatile int busy; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
uint32_t cycles_per_step_event;
uint32_t trapezoid_tick_cycle_counter;
// Values and variables used by the speed trapeziod generator uint32_t cycles_per_step_event; // The number of machine cycles between each step event
uint32_t trapezoid_tick_cycle_counter; // The cycles since last trapezoid_tick used to generate ticks without
// allocating a separate timer
uint32_t trapezoid_rate; // The current rate of step_events according to the trapezoid generator
// Two trapezoids:
// __________________________ // __________________________
// /| |\ _________________ ^ // /| |\ _________________ ^
// / | | \ /| |\ | // / | | \ /| |\ |
@ -63,27 +67,17 @@ uint32_t trapezoid_tick_cycle_counter;
// //
// time -----> // time ----->
// //
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates for // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates until
//
// block->accelerate_ticks by block->rate_delta each tick, then stays up for block->plateau_ticks and // block->accelerate_ticks by block->rate_delta each tick, then stays up for block->plateau_ticks and
// decelerates for the rest of the block until the trapezoid generator is reset for the next block. // decelerates for the rest of the block until the trapezoid generator is reset for the next block.
// The slope of acceleration is always +/- block->rate_delta. Any stage may be skipped by setting the // The slope of acceleration is always +/- block->rate_delta. Any stage may be skipped by setting the
// duration to 0 ticks. // duration to 0 ticks.
#define TRAPEZOID_STAGE_ACCELERATING 0
#define TRAPEZOID_STAGE_PLATEAU 1
#define TRAPEZOID_STAGE_DECELERATING 2
uint8_t trapezoid_stage;
uint16_t trapezoid_stage_ticks;
uint32_t trapezoid_rate;
int16_t trapezoid_delta;
// Initializes the trapezoid generator from the current block. Called whenever a new // Initializes the trapezoid generator from the current block. Called whenever a new
// block begins. // block begins.
inline void reset_trapezoid_generator() { inline void reset_trapezoid_generator() {
trapezoid_stage = TRAPEZOID_STAGE_ACCELERATING;
trapezoid_stage_ticks = current_block->accelerate_ticks;
trapezoid_delta = current_block->rate_delta;
trapezoid_rate = current_block->initial_rate; trapezoid_rate = current_block->initial_rate;
set_step_events_per_minute(trapezoid_rate); set_step_events_per_minute(trapezoid_rate);
} }
@ -92,37 +86,31 @@ inline void reset_trapezoid_generator() {
// interrupt. It can be assumed that the trapezoid-generator-parameters and the // interrupt. It can be assumed that the trapezoid-generator-parameters and the
// current_block stays untouched by outside handlers for the duration of this function call. // current_block stays untouched by outside handlers for the duration of this function call.
inline void trapezoid_generator_tick() { inline void trapezoid_generator_tick() {
if (trapezoid_stage_ticks) { PORTD ^= (1<<2);
trapezoid_stage_ticks--; if (current_block) {
if (trapezoid_delta) { if (step_event_count < current_block->accelerate_until) {
trapezoid_rate += trapezoid_delta; trapezoid_rate += current_block->rate_delta;
set_step_events_per_minute(trapezoid_rate); set_step_events_per_minute(trapezoid_rate);
} } else if (step_event_count > current_block->decelerate_after) {
} else { trapezoid_rate -= current_block->rate_delta;
// Is there a block currently in execution? set_step_events_per_minute(trapezoid_rate);
if(!current_block) {return;} } else {
// Trapezoid stage complete, move on printInteger(trapezoid_rate);
if(trapezoid_stage == TRAPEZOID_STAGE_ACCELERATING) { while(1){};
// Progress to plateau stage
trapezoid_delta = 0;
trapezoid_stage_ticks = current_block->plateau_ticks;
trapezoid_stage = TRAPEZOID_STAGE_PLATEAU;
} else if (trapezoid_stage == TRAPEZOID_STAGE_PLATEAU) {
// Progress to deceleration stage
trapezoid_delta = -current_block->rate_delta;
trapezoid_stage_ticks = 0xffff; // "forever" until the block is complete
trapezoid_stage = TRAPEZOID_STAGE_DECELERATING;
} }
} }
PORTD ^= (1<<2);
} }
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in // Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
// steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters. // calculation the caller must also provide the physical length of the line in millimeters.
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds, double millimeters) { void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds, double millimeters) {
PORTD ^= (1<<2);
plan_buffer_line(steps_x, steps_y, steps_z, microseconds, millimeters); plan_buffer_line(steps_x, steps_y, steps_z, microseconds, millimeters);
// Ensure that block processing is running by enabling The Stepper Driver Interrupt // Ensure that block processing is running by enabling The Stepper Driver Interrupt
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
PORTD ^= (1<<2);
} }
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse of Grbl. It is executed at the rate set with // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse of Grbl. It is executed at the rate set with
@ -135,7 +123,6 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
#endif #endif
{ {
if(busy){ return; } // The busy-flag is used to avoid reentering this interrupt if(busy){ return; } // The busy-flag is used to avoid reentering this interrupt
// Set the direction pins a cuple of nanoseconds before we step the steppers // Set the direction pins a cuple of nanoseconds before we step the steppers
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK); STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK);
// Then pulse the stepping pins // Then pulse the stepping pins
@ -159,7 +146,8 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
counter_x = -(current_block->step_event_count >> 1); counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x; counter_y = counter_x;
counter_z = counter_x; counter_z = counter_x;
iterations = current_block->step_event_count; step_events_left = current_block->step_event_count;
step_event_count = 0;
} else { } else {
DISABLE_STEPPER_DRIVER_INTERRUPT(); DISABLE_STEPPER_DRIVER_INTERRUPT();
} }
@ -183,8 +171,8 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
counter_z -= current_block->step_event_count; counter_z -= current_block->step_event_count;
} }
// If current block is finished, reset pointer // If current block is finished, reset pointer
iterations -= 1; step_events_left -= 1; step_event_count += 1;
if (iterations <= 0) { if (step_events_left <= 0) {
current_block = NULL; current_block = NULL;
// move the block buffer tail to the next instruction // move the block buffer tail to the next instruction
block_buffer_tail = (block_buffer_tail + 1) % BLOCK_BUFFER_SIZE; block_buffer_tail = (block_buffer_tail + 1) % BLOCK_BUFFER_SIZE;
@ -241,12 +229,17 @@ void st_init()
TCCR2A = 0; // Normal operation TCCR2A = 0; // Normal operation
TCCR2B = (1<<CS21); // Full speed, 1/8 prescaler TCCR2B = (1<<CS21); // Full speed, 1/8 prescaler
TIMSK2 |= (1<<TOIE2); TIMSK2 |= (1<<TOIE2);
DISABLE_STEPPER_DRIVER_INTERRUPT(); set_step_events_per_minute(6000);
DISABLE_STEPPER_DRIVER_INTERRUPT();
trapezoid_tick_cycle_counter = 0;
// set enable pin // set enable pin
STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT; STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT;
DDRD |= (1<<2);
PORTD |= (1<<2);
sei(); sei();
} }
@ -279,19 +272,19 @@ uint32_t config_step_timer(uint32_t cycles)
} else if (cycles <= 0x7ffffL) { } else if (cycles <= 0x7ffffL) {
ceiling = cycles >> 3; ceiling = cycles >> 3;
prescaler = 1; // prescaler: 8 prescaler = 1; // prescaler: 8
actual_cycles = ceiling * 8; actual_cycles = ceiling * 8L;
} else if (cycles <= 0x3fffffL) { } else if (cycles <= 0x3fffffL) {
ceiling = cycles >> 6; ceiling = cycles >> 6;
prescaler = 2; // prescaler: 64 prescaler = 2; // prescaler: 64
actual_cycles = ceiling * 64; actual_cycles = ceiling * 64L;
} else if (cycles <= 0xffffffL) { } else if (cycles <= 0xffffffL) {
ceiling = (cycles >> 8); ceiling = (cycles >> 8);
prescaler = 3; // prescaler: 256 prescaler = 3; // prescaler: 256
actual_cycles = ceiling * 256; actual_cycles = ceiling * 256L;
} else if (cycles <= 0x3ffffffL) { } else if (cycles <= 0x3ffffffL) {
ceiling = (cycles >> 10); ceiling = (cycles >> 10);
prescaler = 4; // prescaler: 1024 prescaler = 4; // prescaler: 1024
actual_cycles = ceiling * 1024; actual_cycles = ceiling * 1024L;
} else { } else {
// Okay, that was slower than we actually go. Just set the slowest speed // Okay, that was slower than we actually go. Just set the slowest speed
ceiling = 0xffff; ceiling = 0xffff;
@ -306,6 +299,7 @@ uint32_t config_step_timer(uint32_t cycles)
} }
void set_step_events_per_minute(uint32_t steps_per_minute) { void set_step_events_per_minute(uint32_t steps_per_minute) {
if (steps_per_minute < MINIMUM_STEPS_PER_MINUTE) { steps_per_minute = MINIMUM_STEPS_PER_MINUTE; }
cycles_per_step_event = config_step_timer((TICKS_PER_MICROSECOND*1000000*60)/steps_per_minute); cycles_per_step_event = config_step_timer((TICKS_PER_MICROSECOND*1000000*60)/steps_per_minute);
} }

View File

@ -26,50 +26,73 @@
#include "nuts_bolts.h" #include "nuts_bolts.h"
#include "stepper.h" #include "stepper.h"
#include "config.h" #include "config.h"
#include "wiring_serial.h"
struct Block block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions struct Block block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
volatile int block_buffer_head; // Index of the next block to be pushed volatile int block_buffer_head; // Index of the next block to be pushed
volatile int block_buffer_tail; // Index of the block to process now volatile int block_buffer_tail; // Index of the block to process now
uint8_t acceleration_management; // Acceleration management active? uint8_t acceleration_management; // Acceleration management active?
inline uint32_t estimate_acceleration_distance(int32_t current_rate, int32_t target_rate, int32_t acceleration) {
return((target_rate*target_rate-current_rate*current_rate)/(2*acceleration));
// The distance it takes to accelerate from initial_rate to target_rate using the given acceleration
inline double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration) {
return((target_rate*target_rate-initial_rate*initial_rate)/(2L*acceleration));
} }
inline uint32_t estimate_acceleration_ticks(int32_t start_rate, int32_t acceleration_per_tick, int32_t step_events) { // This function gives you the point at which you must start braking (at the rate of -acceleration) if
return( // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
round( // a total travel of distance. This can be used to compute the intersection point between acceleration and
(sqrt(2*acceleration_per_tick*step_events+(start_rate*start_rate))-start_rate)/ // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
acceleration_per_tick)); /*
+ <- some rate that must be < maximum allowable rate
/|\
/ | \
/ | + <- final_rate
/ | |
initial_rate -> +----+--+
0 ^ ^
| |
result distance
*/
inline double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance) {
return((2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4*acceleration));
} }
// See bottom of this module for a comment outlining the reasoning behind the mathematics behind the
// preceding functions.
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
// In practice both factors must be in the range 0 ... 1.0 // In practice both factors must be in the range 0 ... 1.0
void calculate_trapezoid_for_block(struct Block *block, double entry_factor, double exit_factor) { void calculate_trapezoid_for_block(struct Block *block, double entry_factor, double exit_factor) {
block->initial_rate = round(block->nominal_rate*entry_factor); block->initial_rate = round(block->nominal_rate*entry_factor);
int32_t final_rate = round(block->nominal_rate*entry_factor); int32_t final_rate = round(block->nominal_rate*entry_factor);
int32_t acceleration_per_second = block->rate_delta*ACCELERATION_TICKS_PER_SECOND; int32_t acceleration_per_second = block->rate_delta*ACCELERATION_TICKS_PER_SECOND;
int32_t acceleration_steps = int32_t accelerate_steps =
estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_second); round(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_second));
int32_t decelleration_steps = int32_t decelerate_steps =
estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration_per_second); estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration_per_second);
printString("ir="); printInteger(block->initial_rate); printString("\n\r");
printString("nr="); printInteger(block->nominal_rate); printString("\n\r");
printString("rd="); printInteger(block->rate_delta); printString("\n\r");
printString("aps="); printInteger(acceleration_per_second); printString("\n\r");
printString("acs="); printInteger(accelerate_steps); printString("\n\r");
printString("dcs="); printInteger(decelerate_steps); printString("\n\r");
printString("ts="); printInteger(block->step_event_count); printString("\n\r");
// Check if the acceleration and decelleration periods overlap. In that case nominal_speed will // Check if the acceleration and decelleration periods overlap. In that case nominal_speed will
// never be reached but that's okay. Just truncate both periods proportionally so that they // never be reached but that's okay. Just truncate both periods proportionally so that they
// fit within the allotted step events. // fit within the allotted step events.
int32_t plateau_steps = block->step_event_count-acceleration_steps-decelleration_steps; int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
if (plateau_steps < 0) { if (plateau_steps < 0) {
int32_t half_overlap_region = fabs(plateau_steps)/2; accelerate_steps = round(
intersection_distance(block->initial_rate, final_rate, acceleration_per_second, block->step_event_count));
plateau_steps = 0; plateau_steps = 0;
acceleration_steps = max(acceleration_steps-half_overlap_region,0); printString("No plateau, so: acs="); printInteger(accelerate_steps); printString("\n\r");
decelleration_steps = max(decelleration_steps-half_overlap_region,0); }
} block->accelerate_until = accelerate_steps;
block->accelerate_ticks = estimate_acceleration_ticks(block->initial_rate, block->rate_delta, acceleration_steps); block->decelerate_after = accelerate_steps+plateau_steps;
if (plateau_steps) { }
block->plateau_ticks = round(1.0*plateau_steps/(block->nominal_rate*ACCELERATION_TICKS_PER_SECOND));
} else {
block->plateau_ticks = 0;
}
}
inline double estimate_max_speed(double max_acceleration, double target_velocity, double distance) { inline double estimate_max_speed(double max_acceleration, double target_velocity, double distance) {
return(sqrt(-2*max_acceleration*distance+target_velocity*target_velocity)); return(sqrt(-2*max_acceleration*distance+target_velocity*target_velocity));
@ -185,15 +208,17 @@ void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_
// axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2). // axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
// To generate trapezoids with contant acceleration between blocks the rate_delta must be computed // To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
// specifically for each line to compensate for this phenomenon: // specifically for each line to compensate for this phenomenon:
double travel_per_step = (1.0*millimeters)/block->step_event_count; double travel_per_step = millimeters/block->step_event_count;
printString("travel_per_step*10000=");
printInteger(travel_per_step*10000);printString("\n\r");
block->rate_delta = round( block->rate_delta = round(
(settings.acceleration/(60.0*ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/min per acceleration_tick ((settings.acceleration*60.0)/(ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/sec/sec per acceleration_tick
travel_per_step); // convert to: acceleration steps/min/acceleration_tick travel_per_step); // convert to: acceleration steps/min/acceleration_tick
if (acceleration_management) { if (acceleration_management) {
calculate_trapezoid_for_block(block,0,0); // compute a conservative acceleration trapezoid for now calculate_trapezoid_for_block(block,0,0); // compute a conservative acceleration trapezoid for now
} else { } else {
block->accelerate_ticks = 0; block->accelerate_until = 0;
block->plateau_ticks = 0; block->decelerate_after = 0;
block->rate_delta = 0; block->rate_delta = 0;
} }
@ -206,3 +231,35 @@ void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_
block_buffer_head = next_buffer_head; block_buffer_head = next_buffer_head;
} }
/*
Mathematica reasoning behind the mathematics in this module:
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/

View File

@ -44,10 +44,12 @@ struct Block {
double nominal_speed; // The nominal speed for this block in mm/min double nominal_speed; // The nominal speed for this block in mm/min
double millimeters; double millimeters;
double entry_factor; // The factors representing the change in speed at the start of the trapezoid double entry_factor; // The factors representing the change in speed at the start of the trapezoid
uint32_t initial_rate; // The jerk-adjusted step rate at start of block
int16_t rate_delta; // The steps/minute to add or subtract when changing speed (must be positive) // Settings for the trapezoid generator
uint16_t accelerate_ticks; // The number of acceleration-ticks to accelerate uint32_t initial_rate; // The jerk-adjusted step rate at start of block
uint16_t plateau_ticks; // The number of acceleration-ticks to maintain top speed int32_t rate_delta; // The steps/minute to add or subtract when changing speed (must be positive)
uint32_t accelerate_until; // The index of the step event on which to stop acceleration
uint32_t decelerate_after; // The index of the step event on which to start decelerating
}; };
extern struct Block block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions extern struct Block block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions