still not running, but a lot further along
This commit is contained in:
parent
c9df285604
commit
4103e6ca00
13
config.c
13
config.c
@ -49,11 +49,10 @@ void dump_settings() {
|
||||
printPgmString(PSTR(" (microseconds step pulse)\r\n$4 = ")); printFloat(settings.default_feed_rate);
|
||||
printPgmString(PSTR(" (mm/min default feed rate)\r\n$5 = ")); printFloat(settings.default_seek_rate);
|
||||
printPgmString(PSTR(" (mm/min default seek rate)\r\n$6 = ")); printFloat(settings.mm_per_arc_segment);
|
||||
printPgmString(PSTR(" (mm/min^2 max acceleration)\r\n$7 = ")); printFloat(settings.acceleration);
|
||||
printPgmString(PSTR(" (mm/arc segment)\r\n$8 = ")); printInteger(settings.invert_mask);
|
||||
printPgmString(PSTR(" (mm/arc segment)\r\n$7 = ")); printInteger(settings.invert_mask);
|
||||
printPgmString(PSTR(" (step port invert mask. binary = ")); printIntegerInBase(settings.invert_mask, 2);
|
||||
printPgmString(PSTR(")\r\n$9 = ")); printFloat(settings.acceleration);
|
||||
printPgmString(PSTR(" (acceleration in mm/min^2)\r\n$10 = ")); printFloat(settings.max_jerk);
|
||||
printPgmString(PSTR(")\r\n$8 = ")); printFloat(settings.acceleration);
|
||||
printPgmString(PSTR(" (acceleration in mm/sec^2)\r\n$9 = ")); printFloat(settings.max_jerk);
|
||||
printPgmString(PSTR(" (max instant cornering speed change in delta mm/min)"));
|
||||
printPgmString(PSTR("\r\n'$x=value' to set parameter or just '$' to dump current settings\r\n"));
|
||||
}
|
||||
@ -83,9 +82,9 @@ void store_setting(int parameter, double value) {
|
||||
case 4: settings.default_feed_rate = value; break;
|
||||
case 5: settings.default_seek_rate = value; break;
|
||||
case 6: settings.mm_per_arc_segment = value; break;
|
||||
case 7: settings.acceleration = value; break;
|
||||
case 8: settings.invert_mask = trunc(value); break;
|
||||
case 9: settings.acceleration = fabs(value); break;
|
||||
case 7: settings.invert_mask = trunc(value); break;
|
||||
case 8: settings.acceleration = value; break;
|
||||
case 9: settings.max_jerk = fabs(value); break;
|
||||
default:
|
||||
printPgmString(PSTR("Unknown parameter\r\n"));
|
||||
return;
|
||||
|
4
config.h
4
config.h
@ -21,7 +21,7 @@
|
||||
#ifndef config_h
|
||||
#define config_h
|
||||
|
||||
#define VERSION "0.51"
|
||||
#define VERSION "0.6b"
|
||||
#include <math.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
@ -110,7 +110,7 @@ void store_setting(int parameter, double value);
|
||||
// #define STEPPING_INVERT_MASK (STEP_MASK | (1<<X_DIRECTION_BIT) | (1<<Y_DIRECTION_BIT))
|
||||
|
||||
// The temporal resolution of the acceleration management subsystem
|
||||
#define ACCELERATION_TICKS_PER_SECOND 10
|
||||
#define ACCELERATION_TICKS_PER_SECOND 10L
|
||||
|
||||
// Some useful constants
|
||||
#define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT)) // All step bits
|
||||
|
4
main.c
4
main.c
@ -33,15 +33,13 @@
|
||||
|
||||
int main(void)
|
||||
{
|
||||
beginSerial(BAUD_RATE);
|
||||
printString("A");
|
||||
sp_init(); // initialize the serial protocol
|
||||
config_init();
|
||||
plan_init(); // initialize the stepper plan subsystem
|
||||
st_init(); // initialize the stepper subsystem
|
||||
mc_init(); // initialize motion control subsystem
|
||||
spindle_init(); // initialize spindle controller
|
||||
gc_init(); // initialize gcode-parser
|
||||
sp_init(); // initialize the serial protocol
|
||||
|
||||
DDRD |= (1<<3)|(1<<4)|(1<<5);
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
socat -d -d READLINE /dev/tty.usbserial-A700e0GO,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1
|
||||
socat -d -d READLINE /dev/tty.usbmodem24121,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1
|
||||
socat -d -d READLINE /dev/tty.usbserial-A9007QcR,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1
|
||||
|
||||
#socat -d -d READLINE /dev/tty.FireFly-A964-SPP-1,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1
|
||||
|
@ -37,8 +37,7 @@ void prompt() {
|
||||
|
||||
void sp_init()
|
||||
{
|
||||
beginSerial(BAUD_RATE);
|
||||
|
||||
beginSerial(BAUD_RATE);
|
||||
printPgmString(PSTR("\r\nGrbl "));
|
||||
printPgmString(PSTR(VERSION));
|
||||
printPgmString(PSTR("\r\n"));
|
||||
|
88
stepper.c
88
stepper.c
@ -36,7 +36,7 @@ void set_step_events_per_minute(uint32_t steps_per_minute);
|
||||
|
||||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
|
||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
|
||||
|
||||
#define MINIMUM_STEPS_PER_MINUTE 1200
|
||||
#define CYCLES_PER_ACCELERATION_TICK ((TICKS_PER_MICROSECOND*1000000)/ACCELERATION_TICKS_PER_SECOND)
|
||||
|
||||
struct Block *current_block; // A convenience pointer to the block currently being traced
|
||||
@ -46,12 +46,16 @@ uint8_t out_bits; // The next stepping-bits to be output
|
||||
int32_t counter_x,
|
||||
counter_y,
|
||||
counter_z; // counter variables for the bresenham line tracer
|
||||
uint32_t iterations; // The number of iterations left to complete the current_block
|
||||
uint32_t step_events_left; // The number of step events left to complete the current_block
|
||||
uint32_t step_event_count; // The count of step events executed in the current block
|
||||
volatile int busy; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
||||
uint32_t cycles_per_step_event;
|
||||
uint32_t trapezoid_tick_cycle_counter;
|
||||
|
||||
// Values and variables used by the speed trapeziod generator
|
||||
uint32_t cycles_per_step_event; // The number of machine cycles between each step event
|
||||
uint32_t trapezoid_tick_cycle_counter; // The cycles since last trapezoid_tick used to generate ticks without
|
||||
// allocating a separate timer
|
||||
uint32_t trapezoid_rate; // The current rate of step_events according to the trapezoid generator
|
||||
|
||||
// Two trapezoids:
|
||||
// __________________________
|
||||
// /| |\ _________________ ^
|
||||
// / | | \ /| |\ |
|
||||
@ -63,27 +67,17 @@ uint32_t trapezoid_tick_cycle_counter;
|
||||
//
|
||||
// time ----->
|
||||
//
|
||||
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates for
|
||||
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates until
|
||||
//
|
||||
// block->accelerate_ticks by block->rate_delta each tick, then stays up for block->plateau_ticks and
|
||||
// decelerates for the rest of the block until the trapezoid generator is reset for the next block.
|
||||
// The slope of acceleration is always +/- block->rate_delta. Any stage may be skipped by setting the
|
||||
// duration to 0 ticks.
|
||||
|
||||
#define TRAPEZOID_STAGE_ACCELERATING 0
|
||||
#define TRAPEZOID_STAGE_PLATEAU 1
|
||||
#define TRAPEZOID_STAGE_DECELERATING 2
|
||||
uint8_t trapezoid_stage;
|
||||
uint16_t trapezoid_stage_ticks;
|
||||
uint32_t trapezoid_rate;
|
||||
int16_t trapezoid_delta;
|
||||
|
||||
|
||||
// Initializes the trapezoid generator from the current block. Called whenever a new
|
||||
// block begins.
|
||||
inline void reset_trapezoid_generator() {
|
||||
trapezoid_stage = TRAPEZOID_STAGE_ACCELERATING;
|
||||
trapezoid_stage_ticks = current_block->accelerate_ticks;
|
||||
trapezoid_delta = current_block->rate_delta;
|
||||
inline void reset_trapezoid_generator() {
|
||||
trapezoid_rate = current_block->initial_rate;
|
||||
set_step_events_per_minute(trapezoid_rate);
|
||||
}
|
||||
@ -92,37 +86,31 @@ inline void reset_trapezoid_generator() {
|
||||
// interrupt. It can be assumed that the trapezoid-generator-parameters and the
|
||||
// current_block stays untouched by outside handlers for the duration of this function call.
|
||||
inline void trapezoid_generator_tick() {
|
||||
if (trapezoid_stage_ticks) {
|
||||
trapezoid_stage_ticks--;
|
||||
if (trapezoid_delta) {
|
||||
trapezoid_rate += trapezoid_delta;
|
||||
PORTD ^= (1<<2);
|
||||
if (current_block) {
|
||||
if (step_event_count < current_block->accelerate_until) {
|
||||
trapezoid_rate += current_block->rate_delta;
|
||||
set_step_events_per_minute(trapezoid_rate);
|
||||
}
|
||||
} else {
|
||||
// Is there a block currently in execution?
|
||||
if(!current_block) {return;}
|
||||
// Trapezoid stage complete, move on
|
||||
if(trapezoid_stage == TRAPEZOID_STAGE_ACCELERATING) {
|
||||
// Progress to plateau stage
|
||||
trapezoid_delta = 0;
|
||||
trapezoid_stage_ticks = current_block->plateau_ticks;
|
||||
trapezoid_stage = TRAPEZOID_STAGE_PLATEAU;
|
||||
} else if (trapezoid_stage == TRAPEZOID_STAGE_PLATEAU) {
|
||||
// Progress to deceleration stage
|
||||
trapezoid_delta = -current_block->rate_delta;
|
||||
trapezoid_stage_ticks = 0xffff; // "forever" until the block is complete
|
||||
trapezoid_stage = TRAPEZOID_STAGE_DECELERATING;
|
||||
} else if (step_event_count > current_block->decelerate_after) {
|
||||
trapezoid_rate -= current_block->rate_delta;
|
||||
set_step_events_per_minute(trapezoid_rate);
|
||||
} else {
|
||||
printInteger(trapezoid_rate);
|
||||
while(1){};
|
||||
}
|
||||
}
|
||||
PORTD ^= (1<<2);
|
||||
}
|
||||
|
||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
|
||||
// steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds, double millimeters) {
|
||||
PORTD ^= (1<<2);
|
||||
plan_buffer_line(steps_x, steps_y, steps_z, microseconds, millimeters);
|
||||
// Ensure that block processing is running by enabling The Stepper Driver Interrupt
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
PORTD ^= (1<<2);
|
||||
}
|
||||
|
||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse of Grbl. It is executed at the rate set with
|
||||
@ -135,7 +123,6 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
|
||||
#endif
|
||||
{
|
||||
if(busy){ return; } // The busy-flag is used to avoid reentering this interrupt
|
||||
|
||||
// Set the direction pins a cuple of nanoseconds before we step the steppers
|
||||
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK);
|
||||
// Then pulse the stepping pins
|
||||
@ -159,7 +146,8 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
|
||||
counter_x = -(current_block->step_event_count >> 1);
|
||||
counter_y = counter_x;
|
||||
counter_z = counter_x;
|
||||
iterations = current_block->step_event_count;
|
||||
step_events_left = current_block->step_event_count;
|
||||
step_event_count = 0;
|
||||
} else {
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
@ -183,8 +171,8 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
|
||||
counter_z -= current_block->step_event_count;
|
||||
}
|
||||
// If current block is finished, reset pointer
|
||||
iterations -= 1;
|
||||
if (iterations <= 0) {
|
||||
step_events_left -= 1; step_event_count += 1;
|
||||
if (step_events_left <= 0) {
|
||||
current_block = NULL;
|
||||
// move the block buffer tail to the next instruction
|
||||
block_buffer_tail = (block_buffer_tail + 1) % BLOCK_BUFFER_SIZE;
|
||||
@ -241,12 +229,17 @@ void st_init()
|
||||
TCCR2A = 0; // Normal operation
|
||||
TCCR2B = (1<<CS21); // Full speed, 1/8 prescaler
|
||||
TIMSK2 |= (1<<TOIE2);
|
||||
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
||||
set_step_events_per_minute(6000);
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
trapezoid_tick_cycle_counter = 0;
|
||||
|
||||
// set enable pin
|
||||
STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT;
|
||||
|
||||
DDRD |= (1<<2);
|
||||
PORTD |= (1<<2);
|
||||
|
||||
sei();
|
||||
}
|
||||
|
||||
@ -279,19 +272,19 @@ uint32_t config_step_timer(uint32_t cycles)
|
||||
} else if (cycles <= 0x7ffffL) {
|
||||
ceiling = cycles >> 3;
|
||||
prescaler = 1; // prescaler: 8
|
||||
actual_cycles = ceiling * 8;
|
||||
actual_cycles = ceiling * 8L;
|
||||
} else if (cycles <= 0x3fffffL) {
|
||||
ceiling = cycles >> 6;
|
||||
prescaler = 2; // prescaler: 64
|
||||
actual_cycles = ceiling * 64;
|
||||
actual_cycles = ceiling * 64L;
|
||||
} else if (cycles <= 0xffffffL) {
|
||||
ceiling = (cycles >> 8);
|
||||
prescaler = 3; // prescaler: 256
|
||||
actual_cycles = ceiling * 256;
|
||||
actual_cycles = ceiling * 256L;
|
||||
} else if (cycles <= 0x3ffffffL) {
|
||||
ceiling = (cycles >> 10);
|
||||
prescaler = 4; // prescaler: 1024
|
||||
actual_cycles = ceiling * 1024;
|
||||
actual_cycles = ceiling * 1024L;
|
||||
} else {
|
||||
// Okay, that was slower than we actually go. Just set the slowest speed
|
||||
ceiling = 0xffff;
|
||||
@ -306,6 +299,7 @@ uint32_t config_step_timer(uint32_t cycles)
|
||||
}
|
||||
|
||||
void set_step_events_per_minute(uint32_t steps_per_minute) {
|
||||
if (steps_per_minute < MINIMUM_STEPS_PER_MINUTE) { steps_per_minute = MINIMUM_STEPS_PER_MINUTE; }
|
||||
cycles_per_step_event = config_step_timer((TICKS_PER_MICROSECOND*1000000*60)/steps_per_minute);
|
||||
}
|
||||
|
||||
|
111
stepper_plan.c
111
stepper_plan.c
@ -26,50 +26,73 @@
|
||||
#include "nuts_bolts.h"
|
||||
#include "stepper.h"
|
||||
#include "config.h"
|
||||
#include "wiring_serial.h"
|
||||
|
||||
struct Block block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
||||
volatile int block_buffer_head; // Index of the next block to be pushed
|
||||
volatile int block_buffer_tail; // Index of the block to process now
|
||||
uint8_t acceleration_management; // Acceleration management active?
|
||||
|
||||
inline uint32_t estimate_acceleration_distance(int32_t current_rate, int32_t target_rate, int32_t acceleration) {
|
||||
return((target_rate*target_rate-current_rate*current_rate)/(2*acceleration));
|
||||
|
||||
|
||||
// The distance it takes to accelerate from initial_rate to target_rate using the given acceleration
|
||||
inline double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration) {
|
||||
return((target_rate*target_rate-initial_rate*initial_rate)/(2L*acceleration));
|
||||
}
|
||||
|
||||
inline uint32_t estimate_acceleration_ticks(int32_t start_rate, int32_t acceleration_per_tick, int32_t step_events) {
|
||||
return(
|
||||
round(
|
||||
(sqrt(2*acceleration_per_tick*step_events+(start_rate*start_rate))-start_rate)/
|
||||
acceleration_per_tick));
|
||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||
/*
|
||||
|
||||
+ <- some rate that must be < maximum allowable rate
|
||||
/|\
|
||||
/ | \
|
||||
/ | + <- final_rate
|
||||
/ | |
|
||||
initial_rate -> +----+--+
|
||||
0 ^ ^
|
||||
| |
|
||||
result distance
|
||||
*/
|
||||
inline double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance) {
|
||||
return((2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4*acceleration));
|
||||
}
|
||||
|
||||
// See bottom of this module for a comment outlining the reasoning behind the mathematics behind the
|
||||
// preceding functions.
|
||||
|
||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||
// In practice both factors must be in the range 0 ... 1.0
|
||||
void calculate_trapezoid_for_block(struct Block *block, double entry_factor, double exit_factor) {
|
||||
block->initial_rate = round(block->nominal_rate*entry_factor);
|
||||
int32_t final_rate = round(block->nominal_rate*entry_factor);
|
||||
int32_t acceleration_per_second = block->rate_delta*ACCELERATION_TICKS_PER_SECOND;
|
||||
int32_t acceleration_steps =
|
||||
estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_second);
|
||||
int32_t decelleration_steps =
|
||||
int32_t accelerate_steps =
|
||||
round(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_second));
|
||||
int32_t decelerate_steps =
|
||||
estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration_per_second);
|
||||
printString("ir="); printInteger(block->initial_rate); printString("\n\r");
|
||||
printString("nr="); printInteger(block->nominal_rate); printString("\n\r");
|
||||
printString("rd="); printInteger(block->rate_delta); printString("\n\r");
|
||||
printString("aps="); printInteger(acceleration_per_second); printString("\n\r");
|
||||
printString("acs="); printInteger(accelerate_steps); printString("\n\r");
|
||||
printString("dcs="); printInteger(decelerate_steps); printString("\n\r");
|
||||
printString("ts="); printInteger(block->step_event_count); printString("\n\r");
|
||||
// Check if the acceleration and decelleration periods overlap. In that case nominal_speed will
|
||||
// never be reached but that's okay. Just truncate both periods proportionally so that they
|
||||
// fit within the allotted step events.
|
||||
int32_t plateau_steps = block->step_event_count-acceleration_steps-decelleration_steps;
|
||||
if (plateau_steps < 0) {
|
||||
int32_t half_overlap_region = fabs(plateau_steps)/2;
|
||||
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
||||
if (plateau_steps < 0) {
|
||||
accelerate_steps = round(
|
||||
intersection_distance(block->initial_rate, final_rate, acceleration_per_second, block->step_event_count));
|
||||
plateau_steps = 0;
|
||||
acceleration_steps = max(acceleration_steps-half_overlap_region,0);
|
||||
decelleration_steps = max(decelleration_steps-half_overlap_region,0);
|
||||
}
|
||||
block->accelerate_ticks = estimate_acceleration_ticks(block->initial_rate, block->rate_delta, acceleration_steps);
|
||||
if (plateau_steps) {
|
||||
block->plateau_ticks = round(1.0*plateau_steps/(block->nominal_rate*ACCELERATION_TICKS_PER_SECOND));
|
||||
} else {
|
||||
block->plateau_ticks = 0;
|
||||
}
|
||||
}
|
||||
printString("No plateau, so: acs="); printInteger(accelerate_steps); printString("\n\r");
|
||||
}
|
||||
block->accelerate_until = accelerate_steps;
|
||||
block->decelerate_after = accelerate_steps+plateau_steps;
|
||||
}
|
||||
|
||||
inline double estimate_max_speed(double max_acceleration, double target_velocity, double distance) {
|
||||
return(sqrt(-2*max_acceleration*distance+target_velocity*target_velocity));
|
||||
@ -185,15 +208,17 @@ void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_
|
||||
// axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
|
||||
// To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
|
||||
// specifically for each line to compensate for this phenomenon:
|
||||
double travel_per_step = (1.0*millimeters)/block->step_event_count;
|
||||
double travel_per_step = millimeters/block->step_event_count;
|
||||
printString("travel_per_step*10000=");
|
||||
printInteger(travel_per_step*10000);printString("\n\r");
|
||||
block->rate_delta = round(
|
||||
(settings.acceleration/(60.0*ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/min per acceleration_tick
|
||||
((settings.acceleration*60.0)/(ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/sec/sec per acceleration_tick
|
||||
travel_per_step); // convert to: acceleration steps/min/acceleration_tick
|
||||
if (acceleration_management) {
|
||||
calculate_trapezoid_for_block(block,0,0); // compute a conservative acceleration trapezoid for now
|
||||
} else {
|
||||
block->accelerate_ticks = 0;
|
||||
block->plateau_ticks = 0;
|
||||
block->accelerate_until = 0;
|
||||
block->decelerate_after = 0;
|
||||
block->rate_delta = 0;
|
||||
}
|
||||
|
||||
@ -206,3 +231,35 @@ void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_
|
||||
block_buffer_head = next_buffer_head;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Mathematica reasoning behind the mathematics in this module:
|
||||
|
||||
s == speed, a == acceleration, t == time, d == distance
|
||||
|
||||
Basic definitions:
|
||||
|
||||
Speed[s_, a_, t_] := s + (a*t)
|
||||
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
||||
|
||||
Distance to reach a specific speed with a constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
||||
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
||||
|
||||
Speed after a given distance of travel with constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
||||
m -> Sqrt[2 a d + s^2]
|
||||
|
||||
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
||||
|
||||
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
||||
from initial speed s1 without ever stopping at a plateau:
|
||||
|
||||
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
||||
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
||||
|
||||
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
||||
*/
|
||||
|
||||
|
@ -44,10 +44,12 @@ struct Block {
|
||||
double nominal_speed; // The nominal speed for this block in mm/min
|
||||
double millimeters;
|
||||
double entry_factor; // The factors representing the change in speed at the start of the trapezoid
|
||||
uint32_t initial_rate; // The jerk-adjusted step rate at start of block
|
||||
int16_t rate_delta; // The steps/minute to add or subtract when changing speed (must be positive)
|
||||
uint16_t accelerate_ticks; // The number of acceleration-ticks to accelerate
|
||||
uint16_t plateau_ticks; // The number of acceleration-ticks to maintain top speed
|
||||
|
||||
// Settings for the trapezoid generator
|
||||
uint32_t initial_rate; // The jerk-adjusted step rate at start of block
|
||||
int32_t rate_delta; // The steps/minute to add or subtract when changing speed (must be positive)
|
||||
uint32_t accelerate_until; // The index of the step event on which to stop acceleration
|
||||
uint32_t decelerate_after; // The index of the step event on which to start decelerating
|
||||
};
|
||||
|
||||
extern struct Block block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
||||
|
Loading…
Reference in New Issue
Block a user