grbl-LPC-CoreXY/stepper_plan.c
2011-01-22 23:29:02 +01:00

266 lines
12 KiB
C

/*
stepper_plan.c - buffers movement commands and manages the acceleration profile plan
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include <inttypes.h>
#include <math.h>
#include <stdlib.h>
#include "stepper_plan.h"
#include "nuts_bolts.h"
#include "stepper.h"
#include "config.h"
#include "wiring_serial.h"
struct Block block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
volatile int block_buffer_head; // Index of the next block to be pushed
volatile int block_buffer_tail; // Index of the block to process now
uint8_t acceleration_management; // Acceleration management active?
// The distance it takes to accelerate from initial_rate to target_rate using the given acceleration
inline double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration) {
return((target_rate*target_rate-initial_rate*initial_rate)/(2L*acceleration));
}
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
/*
+ <- some rate that must be < maximum allowable rate
/|\
/ | \
/ | + <- final_rate
/ | |
initial_rate -> +----+--+
0 ^ ^
| |
result distance
*/
inline double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance) {
return((2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4*acceleration));
}
// See bottom of this module for a comment outlining the reasoning behind the mathematics behind the
// preceding functions.
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
// In practice both factors must be in the range 0 ... 1.0
void calculate_trapezoid_for_block(struct Block *block, double entry_factor, double exit_factor) {
block->initial_rate = round(block->nominal_rate*entry_factor);
int32_t final_rate = round(block->nominal_rate*entry_factor);
int32_t acceleration_per_second = block->rate_delta*ACCELERATION_TICKS_PER_SECOND;
int32_t accelerate_steps =
round(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_second));
int32_t decelerate_steps =
estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration_per_second);
printString("ir="); printInteger(block->initial_rate); printString("\n\r");
printString("nr="); printInteger(block->nominal_rate); printString("\n\r");
printString("rd="); printInteger(block->rate_delta); printString("\n\r");
printString("aps="); printInteger(acceleration_per_second); printString("\n\r");
printString("acs="); printInteger(accelerate_steps); printString("\n\r");
printString("dcs="); printInteger(decelerate_steps); printString("\n\r");
printString("ts="); printInteger(block->step_event_count); printString("\n\r");
// Check if the acceleration and decelleration periods overlap. In that case nominal_speed will
// never be reached but that's okay. Just truncate both periods proportionally so that they
// fit within the allotted step events.
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
if (plateau_steps < 0) {
accelerate_steps = round(
intersection_distance(block->initial_rate, final_rate, acceleration_per_second, block->step_event_count));
plateau_steps = 0;
printString("No plateau, so: acs="); printInteger(accelerate_steps); printString("\n\r");
}
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps+plateau_steps;
}
inline double estimate_max_speed(double max_acceleration, double target_velocity, double distance) {
return(sqrt(-2*max_acceleration*distance+target_velocity*target_velocity));
}
inline double estimate_jerk(struct Block *before, struct Block *after) {
return(max(fabs(before->speed_x-after->speed_x),
max(fabs(before->speed_y-after->speed_y),
fabs(before->speed_z-after->speed_z))));
}
// Builds plan for a single block provided. Returns TRUE if changes were made to this block
// that requires any earlier blocks to be recalculated too.
int8_t build_plan_for_single_block(struct Block *previous, struct Block *current, struct Block *next) {
if(!current){return(TRUE);}
double exit_factor;
double entry_factor = 1.0;
if (next) {
exit_factor = next->entry_factor;
} else {
exit_factor = 0.0;
}
if (previous) {
double jerk = estimate_jerk(previous, current);
if (jerk > settings.max_jerk) {
entry_factor = (settings.max_jerk/jerk);
}
if (exit_factor<entry_factor) {
double max_entry_speed = estimate_max_speed(-settings.acceleration,current->nominal_speed*exit_factor,
current->millimeters);
double max_entry_factor = max_entry_speed/current->nominal_speed;
if (max_entry_factor < entry_factor) {
entry_factor = max_entry_factor;
}
}
} else {
entry_factor = 0.0;
}
// Check if we made a difference for this block. If we didn't, the planner can call it quits
// here. No need to process any earlier blocks.
int8_t keep_going = (entry_factor > current->entry_factor ? TRUE : FALSE);
// Store result and recalculate trapezoid parameters
current->entry_factor = entry_factor;
calculate_trapezoid_for_block(current, entry_factor, exit_factor);
return(keep_going);
}
void recalculate_plan() {
int8_t block_index = block_buffer_head;
struct Block *block[3] = {NULL, NULL, NULL};
while(block_index != block_buffer_tail) {
block[2]= block[1];
block[1]= block[0];
block[0] = &block_buffer[block_index];
if (!build_plan_for_single_block(block[0], block[1], block[2])) {return;}
block_index = (block_index-1) % BLOCK_BUFFER_SIZE;
}
if (block[1]) {
calculate_trapezoid_for_block(block[0], block[0]->entry_factor, block[1]->entry_factor);
}
}
void plan_enable_acceleration_management() {
if (!acceleration_management) {
st_synchronize();
acceleration_management = TRUE;
}
}
void plan_disable_acceleration_management() {
if(acceleration_management) {
st_synchronize();
acceleration_management = FALSE;
}
}
void plan_init() {
block_buffer_head = 0;
block_buffer_tail = 0;
plan_enable_acceleration_management();
}
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
// steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds, double millimeters) {
// Calculate the buffer head after we push this byte
int next_buffer_head = (block_buffer_head + 1) % BLOCK_BUFFER_SIZE;
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while(block_buffer_tail == next_buffer_head) { sleep_mode(); }
// Prepare to set up new block
struct Block *block = &block_buffer[block_buffer_head];
// Number of steps for each axis
block->steps_x = labs(steps_x);
block->steps_y = labs(steps_y);
block->steps_z = labs(steps_z);
block->step_event_count = max(block->steps_x, max(block->steps_y, block->steps_z));
// Bail if this is a zero-length block
if (block->step_event_count == 0) { return; };
// Calculate speed in mm/minute for each axis
double multiplier = 60.0*1000000.0/microseconds;
block->speed_x = block->steps_x*multiplier/settings.steps_per_mm[0];
block->speed_y = block->steps_y*multiplier/settings.steps_per_mm[1];
block->speed_z = block->steps_z*multiplier/settings.steps_per_mm[2];
block->nominal_speed = millimeters*multiplier;
block->nominal_rate = round(block->step_event_count*multiplier);
// Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
// average travel per step event changes. For a line along one axis the travel per step event
// is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
// axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
// To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
// specifically for each line to compensate for this phenomenon:
double travel_per_step = millimeters/block->step_event_count;
printString("travel_per_step*10000=");
printInteger(travel_per_step*10000);printString("\n\r");
block->rate_delta = round(
((settings.acceleration*60.0)/(ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/sec/sec per acceleration_tick
travel_per_step); // convert to: acceleration steps/min/acceleration_tick
if (acceleration_management) {
calculate_trapezoid_for_block(block,0,0); // compute a conservative acceleration trapezoid for now
} else {
block->accelerate_until = 0;
block->decelerate_after = 0;
block->rate_delta = 0;
}
// Compute direction bits for this block
block->direction_bits = 0;
if (steps_x < 0) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
if (steps_y < 0) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
if (steps_z < 0) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
// Move buffer head
block_buffer_head = next_buffer_head;
}
/*
Mathematica reasoning behind the mathematics in this module:
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/