Implementiere USB-MIDI-Controller für Arduino Pro Micro mit Hardware- und Software-Architektur, einschließlich Button- und LED-Steuerung, Multiplexer-Integration und MIDI-Kommunikation.
This commit is contained in:
74
src/button_handler.cpp
Normal file
74
src/button_handler.cpp
Normal file
@@ -0,0 +1,74 @@
|
||||
#include "button_handler.h"
|
||||
#include "config.h"
|
||||
|
||||
ButtonHandler::ButtonHandler(Adafruit_MCP23X17* mcp1, Adafruit_MCP23X17* mcp2) {
|
||||
this->mcp1 = mcp1;
|
||||
this->mcp2 = mcp2;
|
||||
|
||||
// Initialisiere alle Button-Zustände
|
||||
for(int i = 0; i < NUM_BUTTONS; i++) {
|
||||
buttonStates[i] = false;
|
||||
lastButtonStates[i] = false;
|
||||
lastDebounceTime[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void ButtonHandler::init() {
|
||||
// Konfiguriere alle Button-Pins als Eingänge mit Pull-Up
|
||||
// MCP1: Buttons 0-15 (Port A und B)
|
||||
for(int i = 0; i < 16; i++) {
|
||||
mcp1->pinMode(i, INPUT_PULLUP);
|
||||
}
|
||||
|
||||
// MCP2: Buttons 16-19 (Port A, Pins 0-3)
|
||||
for(int i = 0; i < 4; i++) {
|
||||
mcp2->pinMode(i, INPUT_PULLUP);
|
||||
}
|
||||
|
||||
Serial.println("Button Handler initialisiert - 20 Buttons konfiguriert");
|
||||
}
|
||||
|
||||
void ButtonHandler::update() {
|
||||
unsigned long currentTime = millis();
|
||||
|
||||
// Lese alle Button-Zustände
|
||||
for(int i = 0; i < NUM_BUTTONS; i++) {
|
||||
bool currentState;
|
||||
|
||||
// Bestimme welcher MCP und welcher Pin
|
||||
if(i < 16) {
|
||||
// Buttons 0-15 auf MCP1
|
||||
currentState = !mcp1->digitalRead(i); // Invertiert wegen Pull-Up
|
||||
} else {
|
||||
// Buttons 16-19 auf MCP2
|
||||
currentState = !mcp2->digitalRead(i - 16); // Invertiert wegen Pull-Up
|
||||
}
|
||||
|
||||
// Debouncing: Prüfe ob genug Zeit vergangen ist
|
||||
if(currentTime - lastDebounceTime[i] > DEBOUNCE_TIME) {
|
||||
if(currentState != lastButtonStates[i]) {
|
||||
// Zustand hat sich geändert - speichere neuen Zustand
|
||||
lastButtonStates[i] = buttonStates[i];
|
||||
buttonStates[i] = currentState;
|
||||
lastDebounceTime[i] = currentTime;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool ButtonHandler::isPressed(uint8_t buttonIndex) {
|
||||
if(buttonIndex >= NUM_BUTTONS) return false;
|
||||
return buttonStates[buttonIndex];
|
||||
}
|
||||
|
||||
bool ButtonHandler::wasPressed(uint8_t buttonIndex) {
|
||||
if(buttonIndex >= NUM_BUTTONS) return false;
|
||||
// Button wurde gedrückt wenn er jetzt gedrückt ist, aber vorher nicht
|
||||
return buttonStates[buttonIndex] && !lastButtonStates[buttonIndex];
|
||||
}
|
||||
|
||||
bool ButtonHandler::wasReleased(uint8_t buttonIndex) {
|
||||
if(buttonIndex >= NUM_BUTTONS) return false;
|
||||
// Button wurde losgelassen wenn er jetzt nicht gedrückt ist, aber vorher schon
|
||||
return !buttonStates[buttonIndex] && lastButtonStates[buttonIndex];
|
||||
}
|
72
src/led_controller.cpp
Normal file
72
src/led_controller.cpp
Normal file
@@ -0,0 +1,72 @@
|
||||
#include "led_controller.h"
|
||||
#include "config.h"
|
||||
|
||||
LEDController::LEDController(Adafruit_MCP23X17* mcp1, Adafruit_MCP23X17* mcp2) {
|
||||
this->mcp1 = mcp1;
|
||||
this->mcp2 = mcp2;
|
||||
|
||||
// Initialisiere alle LED-Zustände als AUS
|
||||
for(int i = 0; i < NUM_LEDS; i++) {
|
||||
ledStates[i] = false;
|
||||
}
|
||||
}
|
||||
|
||||
void LEDController::init() {
|
||||
// Konfiguriere alle LED-Pins als Ausgänge
|
||||
// MCP1: LEDs 0-15 (Port A und B)
|
||||
// Port A = Pins 0-7, Port B = Pins 8-15
|
||||
for(int i = 0; i < 16; i++) {
|
||||
mcp1->pinMode(i, OUTPUT);
|
||||
mcp1->digitalWrite(i, LOW); // LEDs initial ausschalten
|
||||
}
|
||||
|
||||
// MCP2: LEDs 16-19 (Port A, Pins 4-7)
|
||||
// Pins 0-3 sind für Buttons reserviert, LEDs nutzen Pins 4-7
|
||||
for(int i = 4; i < 8; i++) {
|
||||
mcp2->pinMode(i, OUTPUT);
|
||||
mcp2->digitalWrite(i, LOW); // LEDs initial ausschalten
|
||||
}
|
||||
|
||||
Serial.println("LED Controller initialisiert - 20 LEDs konfiguriert");
|
||||
}
|
||||
|
||||
void LEDController::setLED(uint8_t ledIndex, bool state) {
|
||||
if(ledIndex >= NUM_LEDS) return;
|
||||
|
||||
ledStates[ledIndex] = state;
|
||||
|
||||
// Aktualisiere Hardware sofort
|
||||
if(ledIndex < 16) {
|
||||
// LEDs 0-15 auf MCP1
|
||||
mcp1->digitalWrite(ledIndex, state ? HIGH : LOW);
|
||||
} else {
|
||||
// LEDs 16-19 auf MCP2 (Pins 4-7)
|
||||
mcp2->digitalWrite((ledIndex - 16) + 4, state ? HIGH : LOW);
|
||||
}
|
||||
}
|
||||
|
||||
void LEDController::toggleLED(uint8_t ledIndex) {
|
||||
if(ledIndex >= NUM_LEDS) return;
|
||||
setLED(ledIndex, !ledStates[ledIndex]);
|
||||
}
|
||||
|
||||
bool LEDController::getLEDState(uint8_t ledIndex) {
|
||||
if(ledIndex >= NUM_LEDS) return false;
|
||||
return ledStates[ledIndex];
|
||||
}
|
||||
|
||||
void LEDController::updateHardware() {
|
||||
// Aktualisiere alle LED-Zustände in der Hardware
|
||||
// Diese Funktion kann aufgerufen werden, um sicherzustellen,
|
||||
// dass alle LEDs den gewünschten Zustand haben
|
||||
|
||||
for(int i = 0; i < NUM_LEDS; i++) {
|
||||
if(i < 16) {
|
||||
// LEDs 0-15 auf MCP1
|
||||
mcp1->digitalWrite(i, ledStates[i] ? HIGH : LOW);
|
||||
} else {
|
||||
// LEDs 16-19 auf MCP2 (Pins 4-7)
|
||||
mcp2->digitalWrite((i - 16) + 4, ledStates[i] ? HIGH : LOW);
|
||||
}
|
||||
}
|
||||
}
|
175
src/main.cpp
175
src/main.cpp
@@ -1,18 +1,171 @@
|
||||
#include <Arduino.h>
|
||||
/*
|
||||
* USB-MIDI-Controller für Arduino Pro Micro (ATmega32u4)
|
||||
*
|
||||
* Hardware:
|
||||
* - 2x MCP23017 I/O Expander (I2C)
|
||||
* - 1x CD74HC4067 Multiplexer (16-Kanal, analog)
|
||||
* - 8x Drehpotis + 4x Schieberegler (12 analoge Regler total)
|
||||
* - 20x Buttons (Tact Switches)
|
||||
* - 20x LEDs (optisches Feedback)
|
||||
*
|
||||
* Funktionen:
|
||||
* - Analoge Regler senden MIDI-CC (CC1-CC12)
|
||||
* - Buttons senden MIDI Note-On/Off
|
||||
* - LEDs werden via eingehende MIDI-Nachrichten angesteuert
|
||||
* - USB-MIDI Kommunikation
|
||||
*/
|
||||
|
||||
// put function declarations here:
|
||||
int myFunction(int, int);
|
||||
#include <Arduino.h>
|
||||
#include <Wire.h>
|
||||
#include <Adafruit_MCP23X17.h>
|
||||
|
||||
// Eigene Module
|
||||
#include "config.h"
|
||||
#include "multiplexer.h"
|
||||
#include "button_handler.h"
|
||||
#include "led_controller.h"
|
||||
#include "midi_handler.h"
|
||||
|
||||
// Hardware-Objekte
|
||||
Adafruit_MCP23X17 mcp1; // Erste MCP23017 (Adresse 0x20)
|
||||
Adafruit_MCP23X17 mcp2; // Zweite MCP23017 (Adresse 0x21)
|
||||
|
||||
// Modul-Objekte
|
||||
Multiplexer mux(MUX_S0, MUX_S1, MUX_S2, MUX_S3, MUX_ANALOG_PIN);
|
||||
ButtonHandler buttons(&mcp1, &mcp2);
|
||||
LEDController leds(&mcp1, &mcp2);
|
||||
|
||||
// Variablen für Timing
|
||||
unsigned long lastAnalogRead = 0;
|
||||
unsigned long lastButtonRead = 0;
|
||||
unsigned long lastMIDIRead = 0;
|
||||
|
||||
// Timing-Intervalle (in Milliseconds)
|
||||
const unsigned long ANALOG_READ_INTERVAL = 10; // 100Hz für analoge Regler
|
||||
const unsigned long BUTTON_READ_INTERVAL = 5; // 200Hz für Buttons (responsive)
|
||||
const unsigned long MIDI_READ_INTERVAL = 1; // 1000Hz für MIDI (sehr responsive)
|
||||
|
||||
// Callback-Funktionen für eingehende MIDI-Nachrichten
|
||||
void onMIDINoteOn(uint8_t note, uint8_t velocity) {
|
||||
// Suche die entsprechende LED für diese Note
|
||||
for(int i = 0; i < NUM_BUTTONS; i++) {
|
||||
if(BUTTON_NOTE_MAP[i] == note) {
|
||||
leds.setLED(i, true);
|
||||
Serial.print("LED ");
|
||||
Serial.print(i);
|
||||
Serial.print(" eingeschaltet für Note ");
|
||||
Serial.println(note);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void onMIDINoteOff(uint8_t note, uint8_t velocity) {
|
||||
// Suche die entsprechende LED für diese Note
|
||||
for(int i = 0; i < NUM_BUTTONS; i++) {
|
||||
if(BUTTON_NOTE_MAP[i] == note) {
|
||||
leds.setLED(i, false);
|
||||
Serial.print("LED ");
|
||||
Serial.print(i);
|
||||
Serial.print(" ausgeschaltet für Note ");
|
||||
Serial.println(note);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void setup() {
|
||||
// put your setup code here, to run once:
|
||||
int result = myFunction(2, 3);
|
||||
// Serielle Kommunikation für Debugging
|
||||
Serial.begin(115200);
|
||||
while(!Serial && millis() < 3000); // Warte max. 3 Sekunden auf Serial
|
||||
|
||||
Serial.println("=== USB-MIDI-Controller Start ===");
|
||||
Serial.println("Initialisiere Hardware...");
|
||||
|
||||
// I2C initialisieren
|
||||
Wire.begin();
|
||||
Serial.println("I2C Bus initialisiert");
|
||||
|
||||
// MCP23017 Chips initialisieren
|
||||
if (!mcp1.begin_I2C(MCP1_ADDRESS)) {
|
||||
Serial.println("FEHLER: MCP23017 #1 nicht gefunden!");
|
||||
while(1); // Stoppe hier bei Fehler
|
||||
}
|
||||
Serial.println("MCP23017 #1 (0x20) initialisiert");
|
||||
|
||||
if (!mcp2.begin_I2C(MCP2_ADDRESS)) {
|
||||
Serial.println("FEHLER: MCP23017 #2 nicht gefunden!");
|
||||
while(1); // Stoppe hier bei Fehler
|
||||
}
|
||||
Serial.println("MCP23017 #2 (0x21) initialisiert");
|
||||
|
||||
// Module initialisieren
|
||||
mux.init();
|
||||
buttons.init();
|
||||
leds.init();
|
||||
MIDIHandler::init();
|
||||
|
||||
// MIDI-Callbacks registrieren
|
||||
MIDIHandler::onNoteOnCallback = onMIDINoteOn;
|
||||
MIDIHandler::onNoteOffCallback = onMIDINoteOff;
|
||||
|
||||
// LED-Test: Alle LEDs kurz blinken lassen
|
||||
Serial.println("LED-Test...");
|
||||
for(int i = 0; i < NUM_LEDS; i++) {
|
||||
leds.setLED(i, true);
|
||||
delay(50);
|
||||
leds.setLED(i, false);
|
||||
}
|
||||
|
||||
Serial.println("=== Initialisierung abgeschlossen ===");
|
||||
Serial.println("MIDI-Controller bereit!");
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// put your main code here, to run repeatedly:
|
||||
}
|
||||
|
||||
// put function definitions here:
|
||||
int myFunction(int x, int y) {
|
||||
return x + y;
|
||||
unsigned long currentTime = millis();
|
||||
|
||||
// 1. Analoge Regler verarbeiten (Potis & Schieberegler)
|
||||
if(currentTime - lastAnalogRead >= ANALOG_READ_INTERVAL) {
|
||||
lastAnalogRead = currentTime;
|
||||
|
||||
for(int i = 0; i < NUM_ANALOG_CONTROLS; i++) {
|
||||
if(mux.hasChanged(i, ANALOG_THRESHOLD)) {
|
||||
// Lese den aktuellen Wert
|
||||
int rawValue = mux.readChannel(i);
|
||||
|
||||
// Konvertiere zu MIDI-Wert (0-127)
|
||||
uint8_t midiValue = map(rawValue, 0, 1023, 0, 127);
|
||||
|
||||
// Sende MIDI-CC
|
||||
MIDIHandler::sendControlChange(ANALOG_CC_MAP[i], midiValue);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 2. Buttons verarbeiten
|
||||
if(currentTime - lastButtonRead >= BUTTON_READ_INTERVAL) {
|
||||
lastButtonRead = currentTime;
|
||||
|
||||
// Button-Zustände aktualisieren
|
||||
buttons.update();
|
||||
|
||||
// Prüfe auf Button-Events
|
||||
for(int i = 0; i < NUM_BUTTONS; i++) {
|
||||
if(buttons.wasPressed(i)) {
|
||||
// Button wurde gedrückt - sende Note-On
|
||||
MIDIHandler::sendNoteOn(BUTTON_NOTE_MAP[i], 127);
|
||||
}
|
||||
else if(buttons.wasReleased(i)) {
|
||||
// Button wurde losgelassen - sende Note-Off
|
||||
MIDIHandler::sendNoteOff(BUTTON_NOTE_MAP[i], 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 3. Eingehende MIDI-Nachrichten verarbeiten
|
||||
if(currentTime - lastMIDIRead >= MIDI_READ_INTERVAL) {
|
||||
lastMIDIRead = currentTime;
|
||||
MIDIHandler::processIncomingMIDI();
|
||||
}
|
||||
}
|
106
src/midi_handler.cpp
Normal file
106
src/midi_handler.cpp
Normal file
@@ -0,0 +1,106 @@
|
||||
#include "midi_handler.h"
|
||||
#include "config.h"
|
||||
|
||||
// Statische Callback-Pointer initialisieren
|
||||
void (*MIDIHandler::onNoteOnCallback)(uint8_t note, uint8_t velocity) = nullptr;
|
||||
void (*MIDIHandler::onNoteOffCallback)(uint8_t note, uint8_t velocity) = nullptr;
|
||||
|
||||
void MIDIHandler::init() {
|
||||
// MIDI USB wird automatisch initialisiert
|
||||
Serial.println("MIDI Handler initialisiert - USB MIDI bereit");
|
||||
}
|
||||
|
||||
void MIDIHandler::noteOn(byte channel, byte pitch, byte velocity) {
|
||||
midiEventPacket_t noteOn = {0x09, 0x90 | channel, pitch, velocity};
|
||||
MidiUSB.sendMIDI(noteOn);
|
||||
}
|
||||
|
||||
void MIDIHandler::noteOff(byte channel, byte pitch, byte velocity) {
|
||||
midiEventPacket_t noteOff = {0x08, 0x80 | channel, pitch, velocity};
|
||||
MidiUSB.sendMIDI(noteOff);
|
||||
}
|
||||
|
||||
void MIDIHandler::controlChange(byte channel, byte control, byte value) {
|
||||
midiEventPacket_t event = {0x0B, 0xB0 | channel, control, value};
|
||||
MidiUSB.sendMIDI(event);
|
||||
}
|
||||
|
||||
void MIDIHandler::sendNoteOn(uint8_t note, uint8_t velocity) {
|
||||
noteOn(MIDI_CHANNEL - 1, note, velocity); // MIDI-Kanäle sind 0-basiert
|
||||
MidiUSB.flush();
|
||||
|
||||
Serial.print("MIDI Note-On gesendet: Note ");
|
||||
Serial.print(note);
|
||||
Serial.print(", Velocity ");
|
||||
Serial.println(velocity);
|
||||
}
|
||||
|
||||
void MIDIHandler::sendNoteOff(uint8_t note, uint8_t velocity) {
|
||||
noteOff(MIDI_CHANNEL - 1, note, velocity); // MIDI-Kanäle sind 0-basiert
|
||||
MidiUSB.flush();
|
||||
|
||||
Serial.print("MIDI Note-Off gesendet: Note ");
|
||||
Serial.print(note);
|
||||
Serial.print(", Velocity ");
|
||||
Serial.println(velocity);
|
||||
}
|
||||
|
||||
void MIDIHandler::sendControlChange(uint8_t controller, uint8_t value) {
|
||||
controlChange(MIDI_CHANNEL - 1, controller, value); // MIDI-Kanäle sind 0-basiert
|
||||
MidiUSB.flush();
|
||||
|
||||
Serial.print("MIDI CC gesendet: Controller ");
|
||||
Serial.print(controller);
|
||||
Serial.print(", Wert ");
|
||||
Serial.println(value);
|
||||
}
|
||||
|
||||
void MIDIHandler::processIncomingMIDI() {
|
||||
midiEventPacket_t rx;
|
||||
|
||||
do {
|
||||
rx = MidiUSB.read();
|
||||
|
||||
if (rx.header != 0) {
|
||||
// Extrahiere MIDI-Daten
|
||||
uint8_t messageType = rx.byte1 & 0xF0;
|
||||
uint8_t channel = rx.byte1 & 0x0F;
|
||||
uint8_t data1 = rx.byte2;
|
||||
uint8_t data2 = rx.byte3;
|
||||
|
||||
// Prüfe auf den konfigurierten MIDI-Kanal
|
||||
if(channel == (MIDI_CHANNEL - 1)) {
|
||||
switch(messageType) {
|
||||
case 0x90: // Note-On
|
||||
if(data2 > 0) { // Velocity > 0 = echtes Note-On
|
||||
Serial.print("MIDI Note-On empfangen: Note ");
|
||||
Serial.print(data1);
|
||||
Serial.print(", Velocity ");
|
||||
Serial.println(data2);
|
||||
|
||||
if(onNoteOnCallback != nullptr) {
|
||||
onNoteOnCallback(data1, data2);
|
||||
}
|
||||
} else { // Velocity = 0 = Note-Off
|
||||
Serial.print("MIDI Note-Off empfangen (via Note-On): Note ");
|
||||
Serial.println(data1);
|
||||
|
||||
if(onNoteOffCallback != nullptr) {
|
||||
onNoteOffCallback(data1, 0);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 0x80: // Note-Off
|
||||
Serial.print("MIDI Note-Off empfangen: Note ");
|
||||
Serial.println(data1);
|
||||
|
||||
if(onNoteOffCallback != nullptr) {
|
||||
onNoteOffCallback(data1, data2);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} while (rx.header != 0);
|
||||
}
|
73
src/multiplexer.cpp
Normal file
73
src/multiplexer.cpp
Normal file
@@ -0,0 +1,73 @@
|
||||
#include "multiplexer.h"
|
||||
|
||||
Multiplexer::Multiplexer(uint8_t s0Pin, uint8_t s1Pin, uint8_t s2Pin, uint8_t s3Pin, uint8_t analogPin) {
|
||||
this->s0 = s0Pin;
|
||||
this->s1 = s1Pin;
|
||||
this->s2 = s2Pin;
|
||||
this->s3 = s3Pin;
|
||||
this->analogPin = analogPin;
|
||||
|
||||
// Initialisiere alle Werte mit -1 um erste Änderung zu erkennen
|
||||
for(int i = 0; i < 16; i++) {
|
||||
lastValues[i] = -1;
|
||||
lastReadTime[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void Multiplexer::init() {
|
||||
// Konfiguriere Multiplexer-Steuerpins als Ausgänge
|
||||
pinMode(s0, OUTPUT);
|
||||
pinMode(s1, OUTPUT);
|
||||
pinMode(s2, OUTPUT);
|
||||
pinMode(s3, OUTPUT);
|
||||
|
||||
// Konfiguriere analogen Eingang
|
||||
pinMode(analogPin, INPUT);
|
||||
|
||||
Serial.println("CD74HC4067 Multiplexer initialisiert");
|
||||
}
|
||||
|
||||
void Multiplexer::selectChannel(uint8_t channel) {
|
||||
// Stelle sicher dass der Kanal im gültigen Bereich ist
|
||||
if(channel > 15) return;
|
||||
|
||||
// Setze die Multiplexer-Steuerleitungen entsprechend dem Kanal
|
||||
digitalWrite(s0, (channel & 0x01) ? HIGH : LOW);
|
||||
digitalWrite(s1, (channel & 0x02) ? HIGH : LOW);
|
||||
digitalWrite(s2, (channel & 0x04) ? HIGH : LOW);
|
||||
digitalWrite(s3, (channel & 0x08) ? HIGH : LOW);
|
||||
|
||||
// Kurze Verzögerung für Multiplexer-Umschaltung
|
||||
delayMicroseconds(50);
|
||||
}
|
||||
|
||||
int Multiplexer::readChannel(uint8_t channel) {
|
||||
if(channel > 15) return -1;
|
||||
|
||||
// Wähle den Kanal aus
|
||||
selectChannel(channel);
|
||||
|
||||
// Lese den analogen Wert
|
||||
int value = analogRead(analogPin);
|
||||
|
||||
// Speichere den Wert und die Zeit
|
||||
lastValues[channel] = value;
|
||||
lastReadTime[channel] = millis();
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
bool Multiplexer::hasChanged(uint8_t channel, int threshold) {
|
||||
if(channel > 15) return false;
|
||||
|
||||
// Lese aktuellen Wert
|
||||
int currentValue = readChannel(channel);
|
||||
|
||||
// Prüfe ob sich der Wert signifikant geändert hat
|
||||
if(lastValues[channel] == -1) {
|
||||
// Erster Aufruf - als Änderung werten
|
||||
return true;
|
||||
}
|
||||
|
||||
return abs(currentValue - lastValues[channel]) >= threshold;
|
||||
}
|
Reference in New Issue
Block a user