grbl-LPC-CoreXY/motion_control.c
2010-03-02 21:46:51 +01:00

197 lines
6.8 KiB
C

/*
motion_control.c - cartesian robot controller.
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc
interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm'
and the lecture 'Circle Drawing Algorithms' by Leonard McMillan.
http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html
*/
#include <avr/io.h>
#include "config.h"
#include "motion_control.h"
#include <util/delay.h>
#include <math.h>
#include <stdlib.h>
#include "nuts_bolts.h"
#include "stepper.h"
#include "geometry.h"
#include "wiring_serial.h"
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
volatile int8_t mode; // The current operation mode
int32_t position[3]; // The current position of the tool in absolute steps
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
void set_stepper_directions(int8_t *direction);
inline void step_steppers(uint8_t bits);
inline void step_axis(uint8_t axis);
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
void mc_init()
{
mode = MC_MODE_AT_REST;
clear_vector(position);
}
void mc_dwell(uint32_t milliseconds)
{
mode = MC_MODE_DWELL;
st_synchronize();
_delay_ms(milliseconds);
mode = MC_MODE_AT_REST;
}
// Calculate the microseconds between steps that we should wait in order to travel the
// designated amount of millimeters in the amount of steps we are going to generate
void compute_and_set_step_pace(double feed_rate, double millimeters_of_travel, uint32_t steps, int invert) {
int32_t pace;
if (invert) {
pace = round(ONE_MINUTE_OF_MICROSECONDS/feed_rate/steps);
} else {
pace = round((ONE_MINUTE_OF_MICROSECONDS/X_STEPS_PER_MM)/feed_rate);
}
st_buffer_pace(pace);
}
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// 1/feed_rate minutes.
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
{
// Flags to keep track of which axes to step
int32_t target[3]; // The target position in absolute steps
// Setup ---------------------------------------------------------------------------------------------------
PORTD |= (1<<4);
PORTD |= (1<<5);
target[X_AXIS] = round(x*X_STEPS_PER_MM);
target[Y_AXIS] = round(y*Y_STEPS_PER_MM);
target[Z_AXIS] = round(z*Z_STEPS_PER_MM);
PORTD ^= (1<<5);
// Determine direction and travel magnitude for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
step_count[axis] = labs(target[axis] - position[axis]);
direction[axis] = signof(target[axis] - position[axis]);
}
PORTD ^= (1<<5);
// Find the magnitude of the axis with the longest travel
maximum_steps = max(step_count[Z_AXIS],
max(step_count[X_AXIS], step_count[Y_AXIS]));
PORTD ^= (1<<5);
// Nothing to do?
if (maximum_steps == 0) { PORTD &= ~(1<<4); PORTD |= (1<<5); return; }
PORTD ^= (1<<5);
// Set up a neat counter for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
counter[axis] = -maximum_steps/2;
}
PORTD ^= (1<<5);
// Set our direction pins
set_stepper_directions(direction);
PORTD ^= (1<<5);
// Ask old Phytagoras to estimate how many mm our next move is going to take us
double millimeters_of_travel =
sqrt(square(X_STEPS_PER_MM*step_count[X_AXIS]) +
square(Y_STEPS_PER_MM*step_count[Y_AXIS]) +
square(Z_STEPS_PER_MM*step_count[Z_AXIS]));
PORTD ^= (1<<5);
// And set the step pace
compute_and_set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate);
PORTD &= ~(1<<5);
PORTD &= ~(1<<4);
// Execution -----------------------------------------------------------------------------------------------
mode = MC_MODE_LINEAR;
do {
// Trace the line
step_bits = 0;
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
if (target[axis] != position[axis])
{
counter[axis] += step_count[axis];
if (counter[axis] > 0)
{
step_bits |= st_bit_for_stepper(axis);
counter[axis] -= maximum_steps;
position[axis] += direction[axis];
}
}
}
if(step_bits) {
step_steppers(step_bits);
}
} while (step_bits);
mode = MC_MODE_AT_REST;
}
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
int axis_linear, double feed_rate, int invert_feed_rate)
{
}
void mc_go_home()
{
mode = MC_MODE_HOME;
st_go_home();
st_synchronize();
clear_vector(position); // By definition this is location [0, 0, 0]
mode = MC_MODE_AT_REST;
}
int mc_status()
{
return(mode);
}
// Set the direction bits for the stepper motors according to the provided vector.
// direction is an array of three 8 bit integers representing the direction of
// each motor. The values should be negative (reverse), 0 or positive (forward).
void set_stepper_directions(int8_t *direction)
{
/* Sorry about this convoluted code! It uses the fact that bit 7 of each direction
int is set when the direction == -1, but is 0 when direction is forward. This
way we can generate the whole direction bit-mask without doing any comparisions
or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry.
*/
direction_bits = (
((direction[X_AXIS]&0x80)>>(7-X_DIRECTION_BIT)) |
((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) |
((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT)));
}
inline void step_steppers(uint8_t bits)
{
st_buffer_step(direction_bits | bits);
}