197 lines
6.8 KiB
C
197 lines
6.8 KiB
C
/*
|
|
motion_control.c - cartesian robot controller.
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc
|
|
interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm'
|
|
and the lecture 'Circle Drawing Algorithms' by Leonard McMillan.
|
|
|
|
http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
|
|
http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html
|
|
*/
|
|
|
|
#include <avr/io.h>
|
|
#include "config.h"
|
|
#include "motion_control.h"
|
|
#include <util/delay.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include "nuts_bolts.h"
|
|
#include "stepper.h"
|
|
#include "geometry.h"
|
|
|
|
#include "wiring_serial.h"
|
|
|
|
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
|
|
|
volatile int8_t mode; // The current operation mode
|
|
int32_t position[3]; // The current position of the tool in absolute steps
|
|
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
|
|
|
|
void set_stepper_directions(int8_t *direction);
|
|
inline void step_steppers(uint8_t bits);
|
|
inline void step_axis(uint8_t axis);
|
|
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
|
|
|
|
void mc_init()
|
|
{
|
|
mode = MC_MODE_AT_REST;
|
|
clear_vector(position);
|
|
}
|
|
|
|
void mc_dwell(uint32_t milliseconds)
|
|
{
|
|
mode = MC_MODE_DWELL;
|
|
st_synchronize();
|
|
_delay_ms(milliseconds);
|
|
mode = MC_MODE_AT_REST;
|
|
}
|
|
|
|
// Calculate the microseconds between steps that we should wait in order to travel the
|
|
// designated amount of millimeters in the amount of steps we are going to generate
|
|
void compute_and_set_step_pace(double feed_rate, double millimeters_of_travel, uint32_t steps, int invert) {
|
|
int32_t pace;
|
|
if (invert) {
|
|
pace = round(ONE_MINUTE_OF_MICROSECONDS/feed_rate/steps);
|
|
} else {
|
|
pace = round((ONE_MINUTE_OF_MICROSECONDS/X_STEPS_PER_MM)/feed_rate);
|
|
}
|
|
st_buffer_pace(pace);
|
|
}
|
|
|
|
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
|
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
|
|
// 1/feed_rate minutes.
|
|
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
|
{
|
|
// Flags to keep track of which axes to step
|
|
int32_t target[3]; // The target position in absolute steps
|
|
|
|
// Setup ---------------------------------------------------------------------------------------------------
|
|
PORTD |= (1<<4);
|
|
PORTD |= (1<<5);
|
|
target[X_AXIS] = round(x*X_STEPS_PER_MM);
|
|
target[Y_AXIS] = round(y*Y_STEPS_PER_MM);
|
|
target[Z_AXIS] = round(z*Z_STEPS_PER_MM);
|
|
PORTD ^= (1<<5);
|
|
// Determine direction and travel magnitude for each axis
|
|
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
|
step_count[axis] = labs(target[axis] - position[axis]);
|
|
direction[axis] = signof(target[axis] - position[axis]);
|
|
}
|
|
PORTD ^= (1<<5);
|
|
// Find the magnitude of the axis with the longest travel
|
|
maximum_steps = max(step_count[Z_AXIS],
|
|
max(step_count[X_AXIS], step_count[Y_AXIS]));
|
|
PORTD ^= (1<<5);
|
|
// Nothing to do?
|
|
if (maximum_steps == 0) { PORTD &= ~(1<<4); PORTD |= (1<<5); return; }
|
|
PORTD ^= (1<<5);
|
|
// Set up a neat counter for each axis
|
|
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
|
counter[axis] = -maximum_steps/2;
|
|
}
|
|
PORTD ^= (1<<5);
|
|
// Set our direction pins
|
|
set_stepper_directions(direction);
|
|
PORTD ^= (1<<5);
|
|
|
|
// Ask old Phytagoras to estimate how many mm our next move is going to take us
|
|
double millimeters_of_travel =
|
|
sqrt(square(X_STEPS_PER_MM*step_count[X_AXIS]) +
|
|
square(Y_STEPS_PER_MM*step_count[Y_AXIS]) +
|
|
square(Z_STEPS_PER_MM*step_count[Z_AXIS]));
|
|
PORTD ^= (1<<5);
|
|
// And set the step pace
|
|
compute_and_set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate);
|
|
PORTD &= ~(1<<5);
|
|
PORTD &= ~(1<<4);
|
|
|
|
// Execution -----------------------------------------------------------------------------------------------
|
|
|
|
mode = MC_MODE_LINEAR;
|
|
|
|
do {
|
|
// Trace the line
|
|
step_bits = 0;
|
|
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
|
if (target[axis] != position[axis])
|
|
{
|
|
counter[axis] += step_count[axis];
|
|
if (counter[axis] > 0)
|
|
{
|
|
step_bits |= st_bit_for_stepper(axis);
|
|
counter[axis] -= maximum_steps;
|
|
position[axis] += direction[axis];
|
|
}
|
|
}
|
|
}
|
|
if(step_bits) {
|
|
step_steppers(step_bits);
|
|
}
|
|
} while (step_bits);
|
|
mode = MC_MODE_AT_REST;
|
|
}
|
|
|
|
|
|
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
|
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
|
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
|
|
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
|
|
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
|
|
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
|
|
int axis_linear, double feed_rate, int invert_feed_rate)
|
|
{
|
|
}
|
|
|
|
void mc_go_home()
|
|
{
|
|
mode = MC_MODE_HOME;
|
|
st_go_home();
|
|
st_synchronize();
|
|
clear_vector(position); // By definition this is location [0, 0, 0]
|
|
mode = MC_MODE_AT_REST;
|
|
}
|
|
|
|
int mc_status()
|
|
{
|
|
return(mode);
|
|
}
|
|
|
|
// Set the direction bits for the stepper motors according to the provided vector.
|
|
// direction is an array of three 8 bit integers representing the direction of
|
|
// each motor. The values should be negative (reverse), 0 or positive (forward).
|
|
void set_stepper_directions(int8_t *direction)
|
|
{
|
|
/* Sorry about this convoluted code! It uses the fact that bit 7 of each direction
|
|
int is set when the direction == -1, but is 0 when direction is forward. This
|
|
way we can generate the whole direction bit-mask without doing any comparisions
|
|
or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry.
|
|
*/
|
|
direction_bits = (
|
|
((direction[X_AXIS]&0x80)>>(7-X_DIRECTION_BIT)) |
|
|
((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) |
|
|
((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT)));
|
|
}
|
|
|
|
inline void step_steppers(uint8_t bits)
|
|
{
|
|
st_buffer_step(direction_bits | bits);
|
|
}
|