/* motion_control.c - cartesian robot controller. Part of Grbl Copyright (c) 2009 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm' and the lecture 'Circle Drawing Algorithms' by Leonard McMillan. http://en.wikipedia.org/wiki/Midpoint_circle_algorithm http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html */ #include #include "config.h" #include "motion_control.h" #include #include #include #include "nuts_bolts.h" #include "stepper.h" #include "geometry.h" #include "wiring_serial.h" #define ONE_MINUTE_OF_MICROSECONDS 60000000.0 volatile int8_t mode; // The current operation mode int32_t position[3]; // The current position of the tool in absolute steps uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction void set_stepper_directions(int8_t *direction); inline void step_steppers(uint8_t bits); inline void step_axis(uint8_t axis); void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate); void mc_init() { mode = MC_MODE_AT_REST; clear_vector(position); } void mc_dwell(uint32_t milliseconds) { mode = MC_MODE_DWELL; st_synchronize(); _delay_ms(milliseconds); mode = MC_MODE_AT_REST; } // Calculate the microseconds between steps that we should wait in order to travel the // designated amount of millimeters in the amount of steps we are going to generate void compute_and_set_step_pace(double feed_rate, double millimeters_of_travel, uint32_t steps, int invert) { int32_t pace; if (invert) { pace = round(ONE_MINUTE_OF_MICROSECONDS/feed_rate/steps); } else { pace = round((ONE_MINUTE_OF_MICROSECONDS/X_STEPS_PER_MM)/feed_rate); } st_buffer_pace(pace); } // Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second // unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in // 1/feed_rate minutes. void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate) { // Flags to keep track of which axes to step int32_t target[3]; // The target position in absolute steps // Setup --------------------------------------------------------------------------------------------------- PORTD |= (1<<4); PORTD |= (1<<5); target[X_AXIS] = round(x*X_STEPS_PER_MM); target[Y_AXIS] = round(y*Y_STEPS_PER_MM); target[Z_AXIS] = round(z*Z_STEPS_PER_MM); PORTD ^= (1<<5); // Determine direction and travel magnitude for each axis for(axis = X_AXIS; axis <= Z_AXIS; axis++) { step_count[axis] = labs(target[axis] - position[axis]); direction[axis] = signof(target[axis] - position[axis]); } PORTD ^= (1<<5); // Find the magnitude of the axis with the longest travel maximum_steps = max(step_count[Z_AXIS], max(step_count[X_AXIS], step_count[Y_AXIS])); PORTD ^= (1<<5); // Nothing to do? if (maximum_steps == 0) { PORTD &= ~(1<<4); PORTD |= (1<<5); return; } PORTD ^= (1<<5); // Set up a neat counter for each axis for(axis = X_AXIS; axis <= Z_AXIS; axis++) { counter[axis] = -maximum_steps/2; } PORTD ^= (1<<5); // Set our direction pins set_stepper_directions(direction); PORTD ^= (1<<5); // Ask old Phytagoras to estimate how many mm our next move is going to take us double millimeters_of_travel = sqrt(square(X_STEPS_PER_MM*step_count[X_AXIS]) + square(Y_STEPS_PER_MM*step_count[Y_AXIS]) + square(Z_STEPS_PER_MM*step_count[Z_AXIS])); PORTD ^= (1<<5); // And set the step pace compute_and_set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate); PORTD &= ~(1<<5); PORTD &= ~(1<<4); // Execution ----------------------------------------------------------------------------------------------- mode = MC_MODE_LINEAR; do { // Trace the line step_bits = 0; for(axis = X_AXIS; axis <= Z_AXIS; axis++) { if (target[axis] != position[axis]) { counter[axis] += step_count[axis]; if (counter[axis] > 0) { step_bits |= st_bit_for_stepper(axis); counter[axis] -= maximum_steps; position[axis] += direction[axis]; } } } if(step_bits) { step_steppers(step_bits); } } while (step_bits); mode = MC_MODE_AT_REST; } // Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc, // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the // circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining // axis in axis_l which will be the axis for linear travel if you are tracing a helical motion. // ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis. void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2, int axis_linear, double feed_rate, int invert_feed_rate) { } void mc_go_home() { mode = MC_MODE_HOME; st_go_home(); st_synchronize(); clear_vector(position); // By definition this is location [0, 0, 0] mode = MC_MODE_AT_REST; } int mc_status() { return(mode); } // Set the direction bits for the stepper motors according to the provided vector. // direction is an array of three 8 bit integers representing the direction of // each motor. The values should be negative (reverse), 0 or positive (forward). void set_stepper_directions(int8_t *direction) { /* Sorry about this convoluted code! It uses the fact that bit 7 of each direction int is set when the direction == -1, but is 0 when direction is forward. This way we can generate the whole direction bit-mask without doing any comparisions or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry. */ direction_bits = ( ((direction[X_AXIS]&0x80)>>(7-X_DIRECTION_BIT)) | ((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) | ((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT))); } inline void step_steppers(uint8_t bits) { st_buffer_step(direction_bits | bits); }