Realtime rate reporting. Updated decimal places.
- Added a new optional compile-time feature for ‘realtime’ (within 50ms) feed rate reporting. When querying for a status report, a new data value will state the current operating rate. It’s only beta at the moment and has some kinks to work out. - Updated the code for printing floating point values to N decimal places. Generalized the main floating point print code to accept a new decimal places value and created a set of handler functions to print certain floating point value types used in Grbl, like position, rates, coordinate offsets, etc. All of these have different decimal requirements and change when printed in mm or inches mode. - Number of decimal places for the different value types can be re-defined in config.h, but there shouldn’t be a need for this, as these are physically limited. - Removed the decimal places settings, as this was now obsoleted by the new decimal places code. - The new decimal places code also saves almost 300kB in flash space, as it’s more efficient.
This commit is contained in:
parent
92d6c2bca5
commit
ed417220e1
18
config.h
18
config.h
@ -84,10 +84,26 @@
|
||||
// parser state depending on user preferences.
|
||||
#define N_STARTUP_LINE 2 // Integer (1-3)
|
||||
|
||||
// Allows GRBL to tranck and report gcode line numbers. Enabling this means that the planning buffer
|
||||
// Number of floating decimal points printed by Grbl for certain value types. These settings are
|
||||
// determined by realistic and commonly values observed in CNC machines. For example, position
|
||||
// values cannot be less than 0.001mm or 0.0001in, because machines are never more precise than
|
||||
// this. So, there is likely no need to change these, but you can if you need to here.
|
||||
// NOTE: Must be an integer value from 0 to ~4. More than 4 may exhibit round-off errors.
|
||||
#define N_DECIMAL_COORDVALUE_INCH 4 // Coordinate or position value in inches
|
||||
#define N_DECIMAL_COORDVALUE_MM 3 // Coordinate or position value in mm
|
||||
#define N_DECIMAL_RATEVALUE_INCH 1 // Rate or velocity value in in/min
|
||||
#define N_DECIMAL_RATEVALUE_MM 0 // Rate or velocity value in mm/min
|
||||
#define N_DECIMAL_SETTINGVALUE 3 // Decimals for floating point setting values
|
||||
|
||||
// Allows GRBL to track and report gcode line numbers. Enabling this means that the planning buffer
|
||||
// goes from 18 or 16 to make room for the additional line number data in the plan_block_t struct
|
||||
// #define USE_LINE_NUMBERS // Disabled by default. Uncomment to enable.
|
||||
|
||||
// Allows GRBL to report the real-time feed rate. Enabling this means that GRBL will be reporting more
|
||||
// data with each status update.
|
||||
// NOTE: This is experimental and doesn't quite work 100%. Maybe fixed or refactored later.
|
||||
// #define REPORT_REALTIME_RATE // Disabled by default. Uncomment to enable.
|
||||
|
||||
// Enables a second coolant control pin via the mist coolant g-code command M7 on the Arduino Uno
|
||||
// analog pin 5. Only use this option if you require a second coolant control pin.
|
||||
// NOTE: The M8 flood coolant control pin on analog pin 4 will still be functional regardless.
|
||||
|
2
eeprom.h
2
eeprom.h
@ -1,7 +1,7 @@
|
||||
#ifndef eeprom_h
|
||||
#define eeprom_h
|
||||
|
||||
char eeprom_get_char(unsigned int addr);
|
||||
unsigned char eeprom_get_char(unsigned int addr);
|
||||
void eeprom_put_char(unsigned int addr, unsigned char new_value);
|
||||
void memcpy_to_eeprom_with_checksum(unsigned int destination, char *source, unsigned int size);
|
||||
int memcpy_from_eeprom_with_checksum(char *destination, unsigned int source, unsigned int size);
|
||||
|
2
gcode.c
2
gcode.c
@ -634,7 +634,7 @@ uint8_t gc_execute_line(char *line)
|
||||
// Calculate the change in position along each selected axis
|
||||
float x = gc_block.values.xyz[axis_0]-gc_state.position[axis_0]; // Delta x between current position and target
|
||||
float y = gc_block.values.xyz[axis_1]-gc_state.position[axis_1]; // Delta y between current position and target
|
||||
|
||||
|
||||
if (value_words & bit(WORD_R)) { // Arc Radius Mode
|
||||
bit_false(value_words,bit(WORD_R));
|
||||
if (gc_check_same_position(gc_state.position, gc_block.values.xyz)) { FAIL(STATUS_GCODE_INVALID_TARGET); } // [Invalid target]
|
||||
|
36
print.c
36
print.c
@ -129,14 +129,14 @@ void printInteger(long n)
|
||||
// may be set by the user. The integer is then efficiently converted to a string.
|
||||
// NOTE: AVR '%' and '/' integer operations are very efficient. Bitshifting speed-up
|
||||
// techniques are actually just slightly slower. Found this out the hard way.
|
||||
void printFloat(float n)
|
||||
void printFloat(float n, uint8_t decimal_places)
|
||||
{
|
||||
if (n < 0) {
|
||||
serial_write('-');
|
||||
n = -n;
|
||||
}
|
||||
|
||||
uint8_t decimals = settings.decimal_places;
|
||||
uint8_t decimals = decimal_places;
|
||||
while (decimals >= 2) { // Quickly convert values expected to be E0 to E-4.
|
||||
n *= 100;
|
||||
decimals -= 2;
|
||||
@ -148,16 +148,16 @@ void printFloat(float n)
|
||||
unsigned char buf[10];
|
||||
uint8_t i = 0;
|
||||
uint32_t a = (long)n;
|
||||
buf[settings.decimal_places] = '.'; // Place decimal point, even if decimal places are zero.
|
||||
buf[decimal_places] = '.'; // Place decimal point, even if decimal places are zero.
|
||||
while(a > 0) {
|
||||
if (i == settings.decimal_places) { i++; } // Skip decimal point location
|
||||
if (i == decimal_places) { i++; } // Skip decimal point location
|
||||
buf[i++] = (a % 10) + '0'; // Get digit
|
||||
a /= 10;
|
||||
}
|
||||
while (i < settings.decimal_places) {
|
||||
while (i < decimal_places) {
|
||||
buf[i++] = '0'; // Fill in zeros to decimal point for (n < 1)
|
||||
}
|
||||
if (i == settings.decimal_places) { // Fill in leading zero, if needed.
|
||||
if (i == decimal_places) { // Fill in leading zero, if needed.
|
||||
i++;
|
||||
buf[i++] = '0';
|
||||
}
|
||||
@ -166,3 +166,27 @@ void printFloat(float n)
|
||||
for (; i > 0; i--)
|
||||
serial_write(buf[i-1]);
|
||||
}
|
||||
|
||||
|
||||
// Floating value printing handlers for special variables types used in Grbl and are defined
|
||||
// in the config.h.
|
||||
// - CoordValue: Handles all position or coordinate values in inches or mm reporting.
|
||||
// - RateValue: Handles feed rate and current velocity in inches or mm reporting.
|
||||
// - SettingValue: Handles all floating point settings values (always in mm.)
|
||||
void printFloat_CoordValue(float n) {
|
||||
if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) {
|
||||
printFloat(n*INCH_PER_MM,N_DECIMAL_COORDVALUE_INCH);
|
||||
} else {
|
||||
printFloat(n,N_DECIMAL_COORDVALUE_MM);
|
||||
}
|
||||
}
|
||||
|
||||
void printFloat_RateValue(float n) {
|
||||
if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) {
|
||||
printFloat(n*INCH_PER_MM,N_DECIMAL_RATEVALUE_INCH);
|
||||
} else {
|
||||
printFloat(n,N_DECIMAL_RATEVALUE_MM);
|
||||
}
|
||||
}
|
||||
|
||||
void printFloat_SettingValue(float n) { printFloat(n,N_DECIMAL_SETTINGVALUE); }
|
||||
|
12
print.h
12
print.h
@ -37,6 +37,16 @@ void print_uint8_base2(uint8_t n);
|
||||
|
||||
void print_uint8_base10(uint8_t n);
|
||||
|
||||
void printFloat(float n);
|
||||
void printFloat(float n, uint8_t decimal_places);
|
||||
|
||||
// Floating value printing handlers for special variables types used in Grbl.
|
||||
// - CoordValue: Handles all position or coordinate values in inches or mm reporting.
|
||||
// - RateValue: Handles feed rate and current velocity in inches or mm reporting.
|
||||
// - SettingValue: Handles all floating point settings values (always in mm.)
|
||||
void printFloat_CoordValue(float n);
|
||||
|
||||
void printFloat_RateValue(float n);
|
||||
|
||||
void printFloat_SettingValue(float n);
|
||||
|
||||
#endif
|
66
report.c
66
report.c
@ -34,6 +34,7 @@
|
||||
#include "coolant_control.h"
|
||||
#include "planner.h"
|
||||
#include "spindle_control.h"
|
||||
#include "stepper.h"
|
||||
|
||||
|
||||
// Handles the primary confirmation protocol response for streaming interfaces and human-feedback.
|
||||
@ -157,28 +158,27 @@ void report_grbl_help() {
|
||||
// Grbl global settings print out.
|
||||
// NOTE: The numbering scheme here must correlate to storing in settings.c
|
||||
void report_grbl_settings() {
|
||||
printPgmString(PSTR("$0=")); printFloat(settings.steps_per_mm[X_AXIS]);
|
||||
printPgmString(PSTR(" (x, step/mm)\r\n$1=")); printFloat(settings.steps_per_mm[Y_AXIS]);
|
||||
printPgmString(PSTR(" (y, step/mm)\r\n$2=")); printFloat(settings.steps_per_mm[Z_AXIS]);
|
||||
printPgmString(PSTR(" (z, step/mm)\r\n$3=")); printFloat(settings.max_rate[X_AXIS]);
|
||||
printPgmString(PSTR(" (x max rate, mm/min)\r\n$4=")); printFloat(settings.max_rate[Y_AXIS]);
|
||||
printPgmString(PSTR(" (y max rate, mm/min)\r\n$5=")); printFloat(settings.max_rate[Z_AXIS]);
|
||||
printPgmString(PSTR(" (z max rate, mm/min)\r\n$6=")); printFloat(settings.acceleration[X_AXIS]/(60*60)); // Convert from mm/min^2 for human readability
|
||||
printPgmString(PSTR(" (x accel, mm/sec^2)\r\n$7=")); printFloat(settings.acceleration[Y_AXIS]/(60*60)); // Convert from mm/min^2 for human readability
|
||||
printPgmString(PSTR(" (y accel, mm/sec^2)\r\n$8=")); printFloat(settings.acceleration[Z_AXIS]/(60*60)); // Convert from mm/min^2 for human readability
|
||||
printPgmString(PSTR(" (z accel, mm/sec^2)\r\n$9=")); printFloat(-settings.max_travel[X_AXIS]); // Grbl internally store this as negative.
|
||||
printPgmString(PSTR(" (x max travel, mm)\r\n$10=")); printFloat(-settings.max_travel[Y_AXIS]); // Grbl internally store this as negative.
|
||||
printPgmString(PSTR(" (y max travel, mm)\r\n$11=")); printFloat(-settings.max_travel[Z_AXIS]); // Grbl internally store this as negative.
|
||||
printPgmString(PSTR("$0=")); printFloat_SettingValue(settings.steps_per_mm[X_AXIS]);
|
||||
printPgmString(PSTR(" (x, step/mm)\r\n$1=")); printFloat_SettingValue(settings.steps_per_mm[Y_AXIS]);
|
||||
printPgmString(PSTR(" (y, step/mm)\r\n$2=")); printFloat_SettingValue(settings.steps_per_mm[Z_AXIS]);
|
||||
printPgmString(PSTR(" (z, step/mm)\r\n$3=")); printFloat_SettingValue(settings.max_rate[X_AXIS]);
|
||||
printPgmString(PSTR(" (x max rate, mm/min)\r\n$4=")); printFloat_SettingValue(settings.max_rate[Y_AXIS]);
|
||||
printPgmString(PSTR(" (y max rate, mm/min)\r\n$5=")); printFloat_SettingValue(settings.max_rate[Z_AXIS]);
|
||||
printPgmString(PSTR(" (z max rate, mm/min)\r\n$6=")); printFloat_SettingValue(settings.acceleration[X_AXIS]/(60*60)); // Convert from mm/min^2 for human readability
|
||||
printPgmString(PSTR(" (x accel, mm/sec^2)\r\n$7=")); printFloat_SettingValue(settings.acceleration[Y_AXIS]/(60*60)); // Convert from mm/min^2 for human readability
|
||||
printPgmString(PSTR(" (y accel, mm/sec^2)\r\n$8=")); printFloat_SettingValue(settings.acceleration[Z_AXIS]/(60*60)); // Convert from mm/min^2 for human readability
|
||||
printPgmString(PSTR(" (z accel, mm/sec^2)\r\n$9=")); printFloat_SettingValue(-settings.max_travel[X_AXIS]); // Grbl internally store this as negative.
|
||||
printPgmString(PSTR(" (x max travel, mm)\r\n$10=")); printFloat_SettingValue(-settings.max_travel[Y_AXIS]); // Grbl internally store this as negative.
|
||||
printPgmString(PSTR(" (y max travel, mm)\r\n$11=")); printFloat_SettingValue(-settings.max_travel[Z_AXIS]); // Grbl internally store this as negative.
|
||||
printPgmString(PSTR(" (z max travel, mm)\r\n$12=")); print_uint8_base10(settings.pulse_microseconds);
|
||||
printPgmString(PSTR(" (step pulse, usec)\r\n$13=")); print_uint8_base10(settings.step_invert_mask);
|
||||
printPgmString(PSTR(" (step port invert mask:")); print_uint8_base2(settings.step_invert_mask);
|
||||
printPgmString(PSTR(")\r\n$14=")); print_uint8_base10(settings.dir_invert_mask);
|
||||
printPgmString(PSTR(" (dir port invert mask:")); print_uint8_base2(settings.dir_invert_mask);
|
||||
printPgmString(PSTR(")\r\n$15=")); print_uint8_base10(settings.stepper_idle_lock_time);
|
||||
printPgmString(PSTR(" (step idle delay, msec)\r\n$16=")); printFloat(settings.junction_deviation);
|
||||
printPgmString(PSTR(" (junction deviation, mm)\r\n$17=")); printFloat(settings.arc_tolerance);
|
||||
printPgmString(PSTR(" (arc tolerance, mm)\r\n$18=")); print_uint8_base10(settings.decimal_places);
|
||||
printPgmString(PSTR(" (n-decimals, int)\r\n$19=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_REPORT_INCHES));
|
||||
printPgmString(PSTR(" (step idle delay, msec)\r\n$16=")); printFloat_SettingValue(settings.junction_deviation);
|
||||
printPgmString(PSTR(" (junction deviation, mm)\r\n$17=")); printFloat_SettingValue(settings.arc_tolerance);
|
||||
printPgmString(PSTR(" (arc tolerance, mm)\r\n$19=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_REPORT_INCHES));
|
||||
printPgmString(PSTR(" (report inches, bool)\r\n$20=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_AUTO_START));
|
||||
printPgmString(PSTR(" (auto start, bool)\r\n$21=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE));
|
||||
printPgmString(PSTR(" (invert step enable, bool)\r\n$22=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS));
|
||||
@ -187,10 +187,10 @@ void report_grbl_settings() {
|
||||
printPgmString(PSTR(" (hard limits, bool)\r\n$25=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE));
|
||||
printPgmString(PSTR(" (homing cycle, bool)\r\n$26=")); print_uint8_base10(settings.homing_dir_mask);
|
||||
printPgmString(PSTR(" (homing dir invert mask:")); print_uint8_base2(settings.homing_dir_mask);
|
||||
printPgmString(PSTR(")\r\n$27=")); printFloat(settings.homing_feed_rate);
|
||||
printPgmString(PSTR(" (homing feed, mm/min)\r\n$28=")); printFloat(settings.homing_seek_rate);
|
||||
printPgmString(PSTR(")\r\n$27=")); printFloat_SettingValue(settings.homing_feed_rate);
|
||||
printPgmString(PSTR(" (homing feed, mm/min)\r\n$28=")); printFloat_SettingValue(settings.homing_seek_rate);
|
||||
printPgmString(PSTR(" (homing seek, mm/min)\r\n$29=")); print_uint8_base10(settings.homing_debounce_delay);
|
||||
printPgmString(PSTR(" (homing debounce, msec)\r\n$30=")); printFloat(settings.homing_pulloff);
|
||||
printPgmString(PSTR(" (homing debounce, msec)\r\n$30=")); printFloat_SettingValue(settings.homing_pulloff);
|
||||
printPgmString(PSTR(" (homing pull-off, mm)\r\n"));
|
||||
}
|
||||
|
||||
@ -207,8 +207,7 @@ void report_probe_parameters()
|
||||
printPgmString(PSTR("[Probe:"));
|
||||
for (i=0; i< N_AXIS; i++) {
|
||||
print_position[i] = sys.probe_position[i]/settings.steps_per_mm[i];
|
||||
if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) { print_position[i] *= INCH_PER_MM; }
|
||||
printFloat(print_position[i]);
|
||||
printFloat_CoordValue(print_position[i]);
|
||||
if (i < (N_AXIS-1)) { printPgmString(PSTR(",")); }
|
||||
}
|
||||
printPgmString(PSTR("]\r\n"));
|
||||
@ -233,16 +232,14 @@ void report_ngc_parameters()
|
||||
}
|
||||
printPgmString(PSTR(":"));
|
||||
for (i=0; i<N_AXIS; i++) {
|
||||
if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) { printFloat(coord_data[i]*INCH_PER_MM); }
|
||||
else { printFloat(coord_data[i]); }
|
||||
printFloat_CoordValue(coord_data[i]);
|
||||
if (i < (N_AXIS-1)) { printPgmString(PSTR(",")); }
|
||||
else { printPgmString(PSTR("]\r\n")); }
|
||||
}
|
||||
}
|
||||
printPgmString(PSTR("[G92:")); // Print G92,G92.1 which are not persistent in memory
|
||||
for (i=0; i<N_AXIS; i++) {
|
||||
if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) { printFloat(gc_state.coord_offset[i]*INCH_PER_MM); }
|
||||
else { printFloat(gc_state.coord_offset[i]); }
|
||||
printFloat_CoordValue(gc_state.coord_offset[i]);
|
||||
if (i < (N_AXIS-1)) { printPgmString(PSTR(",")); }
|
||||
else { printPgmString(PSTR("]\r\n")); }
|
||||
}
|
||||
@ -303,7 +300,7 @@ void report_gcode_modes()
|
||||
print_uint8_base10(gc_state.tool);
|
||||
|
||||
printPgmString(PSTR(" F"));
|
||||
printFloat(gc_state.feed_rate);
|
||||
printFloat_RateValue(gc_state.feed_rate);
|
||||
|
||||
printPgmString(PSTR("]\r\n"));
|
||||
}
|
||||
@ -357,20 +354,15 @@ void report_realtime_status()
|
||||
printPgmString(PSTR(",MPos:"));
|
||||
for (i=0; i< N_AXIS; i++) {
|
||||
print_position[i] = current_position[i]/settings.steps_per_mm[i];
|
||||
if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) { print_position[i] *= INCH_PER_MM; }
|
||||
printFloat(print_position[i]);
|
||||
printFloat_CoordValue(print_position[i]);
|
||||
printPgmString(PSTR(","));
|
||||
}
|
||||
|
||||
// Report work position
|
||||
printPgmString(PSTR("WPos:"));
|
||||
for (i=0; i< N_AXIS; i++) {
|
||||
if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) {
|
||||
print_position[i] -= (gc_state.coord_system[i]+gc_state.coord_offset[i])*INCH_PER_MM;
|
||||
} else {
|
||||
print_position[i] -= gc_state.coord_system[i]+gc_state.coord_offset[i];
|
||||
}
|
||||
printFloat(print_position[i]);
|
||||
print_position[i] -= gc_state.coord_system[i]+gc_state.coord_offset[i];
|
||||
printFloat_CoordValue(print_position[i]);
|
||||
if (i < (N_AXIS-1)) { printPgmString(PSTR(",")); }
|
||||
}
|
||||
|
||||
@ -385,5 +377,11 @@ void report_realtime_status()
|
||||
printInteger(ln);
|
||||
#endif
|
||||
|
||||
#ifdef REPORT_REALTIME_RATE
|
||||
// Report realtime rate
|
||||
printPgmString(PSTR(",F:"));
|
||||
printFloat_RateValue(st_get_realtime_rate());
|
||||
#endif
|
||||
|
||||
printPgmString(PSTR(">\r\n"));
|
||||
}
|
||||
|
@ -90,7 +90,6 @@ void settings_reset() {
|
||||
settings.homing_debounce_delay = DEFAULT_HOMING_DEBOUNCE_DELAY;
|
||||
settings.homing_pulloff = DEFAULT_HOMING_PULLOFF;
|
||||
settings.stepper_idle_lock_time = DEFAULT_STEPPER_IDLE_LOCK_TIME;
|
||||
settings.decimal_places = DEFAULT_DECIMAL_PLACES;
|
||||
settings.max_travel[X_AXIS] = (-DEFAULT_X_MAX_TRAVEL);
|
||||
settings.max_travel[Y_AXIS] = (-DEFAULT_Y_MAX_TRAVEL);
|
||||
settings.max_travel[Z_AXIS] = (-DEFAULT_Z_MAX_TRAVEL);
|
||||
@ -181,7 +180,6 @@ uint8_t settings_store_global_setting(int parameter, float value) {
|
||||
case 15: settings.stepper_idle_lock_time = round(value); break;
|
||||
case 16: settings.junction_deviation = fabs(value); break;
|
||||
case 17: settings.arc_tolerance = value; break;
|
||||
case 18: settings.decimal_places = round(value); break;
|
||||
case 19:
|
||||
if (value) { settings.flags |= BITFLAG_REPORT_INCHES; }
|
||||
else { settings.flags &= ~BITFLAG_REPORT_INCHES; }
|
||||
|
@ -70,7 +70,6 @@ typedef struct {
|
||||
uint8_t stepper_idle_lock_time; // If max value 255, steppers do not disable.
|
||||
float junction_deviation;
|
||||
float arc_tolerance;
|
||||
uint8_t decimal_places;
|
||||
uint8_t flags; // Contains default boolean settings
|
||||
uint8_t homing_dir_mask;
|
||||
float homing_feed_rate;
|
||||
|
15
stepper.c
15
stepper.c
@ -821,6 +821,21 @@ void st_prep_buffer()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Called by runtime status reporting to fetch the current speed being executed. This value
|
||||
// however is not exactly the current speed, but the speed computed in the last step segment
|
||||
// in the segment buffer. It will always be behind by up to the number of segment blocks (-1)
|
||||
// divided by the ACCELERATION TICKS PER SECOND in seconds.
|
||||
#ifdef REPORT_REALTIME_RATE
|
||||
float st_get_realtime_rate()
|
||||
{
|
||||
if (sys.state & (STATE_CYCLE | STATE_HOMING)){
|
||||
return prep.current_speed;
|
||||
}
|
||||
return 0.0f;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
TODO: With feedrate overrides, increases to the override value will not significantly
|
||||
change the current planner and stepper operation. When the value increases, we simply
|
||||
|
@ -44,4 +44,9 @@ void st_prep_buffer();
|
||||
// Called by planner_recalculate() when the executing block is updated by the new plan.
|
||||
void st_update_plan_block_parameters();
|
||||
|
||||
// Called by runtime status reporting if realtime rate reporting is enabled in config.h.
|
||||
#ifdef REPORT_REALTIME_RATE
|
||||
float st_get_realtime_rate();
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user