Tweaks. Seek rate updates when set. CCW arc full circle fix.

- Fixed a minor issue where the seek rates would not immediately be
used and only would after a reset. Should update live now.

- A full circle IJ offset CCW arc would not do anything. Fixed bug via
a simple if-then statement.

- Radius mode tweaks to check for negative value in sqrt() rather than
isnan() it. Error report updated to indicate what actually happened.
This commit is contained in:
Sonny Jeon 2012-11-10 12:49:33 -07:00
parent 978de77c2f
commit e6ad15b548
5 changed files with 19 additions and 14 deletions

18
gcode.c
View File

@ -52,7 +52,7 @@ void gc_init()
{ {
memset(&gc, 0, sizeof(gc)); memset(&gc, 0, sizeof(gc));
gc.feed_rate = settings.default_feed_rate; // Should be zero at initialization. gc.feed_rate = settings.default_feed_rate; // Should be zero at initialization.
gc.seek_rate = settings.default_seek_rate; // gc.seek_rate = settings.default_seek_rate;
select_plane(X_AXIS, Y_AXIS, Z_AXIS); select_plane(X_AXIS, Y_AXIS, Z_AXIS);
gc.absolute_mode = true; gc.absolute_mode = true;
@ -323,14 +323,14 @@ uint8_t gc_execute_line(char *line)
target[i] = gc.position[i]; target[i] = gc.position[i];
} }
} }
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], gc.seek_rate, false); mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], settings.default_seek_rate, false);
} }
// Retreive G28/30 go-home position data (in machine coordinates) from EEPROM // Retreive G28/30 go-home position data (in machine coordinates) from EEPROM
float coord_data[N_AXIS]; float coord_data[N_AXIS];
uint8_t home_select = SETTING_INDEX_G28; uint8_t home_select = SETTING_INDEX_G28;
if (non_modal_action == NON_MODAL_GO_HOME_1) { home_select = SETTING_INDEX_G30; } if (non_modal_action == NON_MODAL_GO_HOME_1) { home_select = SETTING_INDEX_G30; }
if (!settings_read_coord_data(home_select,coord_data)) { return(STATUS_SETTING_READ_FAIL); } if (!settings_read_coord_data(home_select,coord_data)) { return(STATUS_SETTING_READ_FAIL); }
mc_line(coord_data[X_AXIS], coord_data[Y_AXIS], coord_data[Z_AXIS], gc.seek_rate, false); mc_line(coord_data[X_AXIS], coord_data[Y_AXIS], coord_data[Z_AXIS], settings.default_seek_rate, false);
axis_words = 0; // Axis words used. Lock out from motion modes by clearing flags. axis_words = 0; // Axis words used. Lock out from motion modes by clearing flags.
break; break;
case NON_MODAL_SET_HOME_0: case NON_MODAL_SET_HOME_1: case NON_MODAL_SET_HOME_0: case NON_MODAL_SET_HOME_1:
@ -400,7 +400,7 @@ uint8_t gc_execute_line(char *line)
break; break;
case MOTION_MODE_SEEK: case MOTION_MODE_SEEK:
if (!axis_words) { FAIL(STATUS_INVALID_STATEMENT);} if (!axis_words) { FAIL(STATUS_INVALID_STATEMENT);}
else { mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], gc.seek_rate, false); } else { mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], settings.default_seek_rate, false); }
break; break;
case MOTION_MODE_LINEAR: case MOTION_MODE_LINEAR:
// TODO: Inverse time requires F-word with each statement. Need to do a check. Also need // TODO: Inverse time requires F-word with each statement. Need to do a check. Also need
@ -474,10 +474,12 @@ uint8_t gc_execute_line(char *line)
float y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1]; float y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
clear_vector(offset); clear_vector(offset);
float h_x2_div_d = -sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == -(h * 2 / d) // First, use h_x2_div_d to compute 4*h^2 to check if it is negative or r is smaller
// If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any // than d. If so, the sqrt of a negative number is complex and error out.
// real CNC, and thus - for practical reasons - we will terminate promptly: float h_x2_div_d = 4 * r*r - x*x - y*y;
if(isnan(h_x2_div_d)) { FAIL(STATUS_FLOATING_POINT_ERROR); return(gc.status_code); } if (h_x2_div_d < 0) { FAIL(STATUS_ARC_RADIUS_ERROR); return(gc.status_code); }
// Finish computing h_x2_div_d.
h_x2_div_d = -sqrt(h_x2_div_d)/hypot(x,y); // == -(h * 2 / d)
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below) // Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; } if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }

View File

@ -83,7 +83,7 @@ typedef struct {
int8_t spindle_direction; // 1 = CW, -1 = CCW, 0 = Stop {M3, M4, M5} int8_t spindle_direction; // 1 = CW, -1 = CCW, 0 = Stop {M3, M4, M5}
uint8_t coolant_mode; // 0 = Disable, 1 = Flood Enable {M8, M9} uint8_t coolant_mode; // 0 = Disable, 1 = Flood Enable {M8, M9}
float feed_rate; // Millimeters/min float feed_rate; // Millimeters/min
float seek_rate; // Millimeters/min - Can change depending on switches and such. // float seek_rate; // Millimeters/min. Will be used in v0.9 when axis independence is installed
float position[3]; // Where the interpreter considers the tool to be at this point in the code float position[3]; // Where the interpreter considers the tool to be at this point in the code
uint8_t tool; uint8_t tool;
// uint16_t spindle_speed; // RPM/100 // uint16_t spindle_speed; // RPM/100

View File

@ -105,8 +105,11 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
// CCW angle between position and target from circle center. Only one atan2() trig computation required. // CCW angle between position and target from circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
if (angular_travel < 0) { angular_travel += 2*M_PI; } if (isclockwise) { // Correct atan2 output per direction
if (isclockwise) { angular_travel -= 2*M_PI; } if (angular_travel >= 0) { angular_travel -= 2*M_PI; }
} else {
if (angular_travel <= 0) { angular_travel += 2*M_PI; }
}
float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
if (millimeters_of_travel == 0.0) { return; } if (millimeters_of_travel == 0.0) { return; }

View File

@ -56,8 +56,8 @@ void report_status_message(uint8_t status_code)
printPgmString(PSTR("Expected command letter")); break; printPgmString(PSTR("Expected command letter")); break;
case STATUS_UNSUPPORTED_STATEMENT: case STATUS_UNSUPPORTED_STATEMENT:
printPgmString(PSTR("Unsupported statement")); break; printPgmString(PSTR("Unsupported statement")); break;
case STATUS_FLOATING_POINT_ERROR: case STATUS_ARC_RADIUS_ERROR:
printPgmString(PSTR("Float error")); break; printPgmString(PSTR("Invalid radius")); break;
case STATUS_MODAL_GROUP_VIOLATION: case STATUS_MODAL_GROUP_VIOLATION:
printPgmString(PSTR("Modal group violation")); break; printPgmString(PSTR("Modal group violation")); break;
case STATUS_INVALID_STATEMENT: case STATUS_INVALID_STATEMENT:

View File

@ -26,7 +26,7 @@
#define STATUS_BAD_NUMBER_FORMAT 1 #define STATUS_BAD_NUMBER_FORMAT 1
#define STATUS_EXPECTED_COMMAND_LETTER 2 #define STATUS_EXPECTED_COMMAND_LETTER 2
#define STATUS_UNSUPPORTED_STATEMENT 3 #define STATUS_UNSUPPORTED_STATEMENT 3
#define STATUS_FLOATING_POINT_ERROR 4 #define STATUS_ARC_RADIUS_ERROR 4
#define STATUS_MODAL_GROUP_VIOLATION 5 #define STATUS_MODAL_GROUP_VIOLATION 5
#define STATUS_INVALID_STATEMENT 6 #define STATUS_INVALID_STATEMENT 6
#define STATUS_HARD_LIMIT 7 #define STATUS_HARD_LIMIT 7