Bug fixes.

- G38.x was not printing correctly in the $G g-code state reports. Now
fixed.

- When investigating the above issue, it was noticed that G38.x
wouldn’t show at all, but instead a G0 would be printed. This was
unlike the v0.9j master build. It turned out volatile variables do not
like to be defined inside a C struct. These are undefined on how to be
handled. Once pulled out, all weird issues went away.

- Also changed two ‘sizeof()’ statements in the mc_probe() and
probe_state_monitor() functions to be more robust later on.

- Updated the commit logs to individual files for each minor release.
Forgot to update the generating script to account for this.
This commit is contained in:
Sonny Jeon
2015-09-30 21:32:58 -06:00
15 changed files with 183 additions and 142 deletions

View File

@ -1044,7 +1044,7 @@ uint8_t gc_execute_line(char *line)
protocol_buffer_synchronize(); // Sync and finish all remaining buffered motions before moving on.
if (gc_state.modal.program_flow == PROGRAM_FLOW_PAUSED) {
if (sys.state != STATE_CHECK_MODE) {
bit_true_atomic(sys.rt_exec_state, EXEC_FEED_HOLD); // Use feed hold for program pause.
bit_true_atomic(sys_rt_exec_state, EXEC_FEED_HOLD); // Use feed hold for program pause.
protocol_execute_realtime(); // Execute suspend.
}
} else { // == PROGRAM_FLOW_COMPLETED

View File

@ -23,7 +23,7 @@
// Grbl versioning system
#define GRBL_VERSION "1.0b"
#define GRBL_VERSION_BUILD "20150924"
#define GRBL_VERSION_BUILD "20150930"
// Define standard libraries used by Grbl.
#include <avr/io.h>

View File

@ -101,16 +101,16 @@ uint8_t limits_get_state()
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
// limit setting if their limits are constantly triggering after a reset and move their axes.
if (sys.state != STATE_ALARM) {
if (!(sys.rt_exec_alarm)) {
if (!(sys_rt_exec_alarm)) {
#ifdef HARD_LIMIT_FORCE_STATE_CHECK
// Check limit pin state.
if (limits_get_state()) {
mc_reset(); // Initiate system kill.
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
bit_true_atomic(sys_rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
}
#else
mc_reset(); // Initiate system kill.
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
bit_true_atomic(sys_rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
#endif
}
}
@ -122,11 +122,11 @@ uint8_t limits_get_state()
{
WDTCSR &= ~(1<<WDIE); // Disable watchdog timer.
if (sys.state != STATE_ALARM) { // Ignore if already in alarm state.
if (!(sys.rt_exec_alarm)) {
if (!(sys_rt_exec_alarm)) {
// Check limit pin state.
if (limits_get_state()) {
mc_reset(); // Initiate system kill.
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
bit_true_atomic(sys_rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
}
}
}
@ -225,17 +225,17 @@ void limits_go_home(uint8_t cycle_mask)
st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us.
// Exit routines: No time to run protocol_execute_realtime() in this loop.
if (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_STOP)) {
if (sys_rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_STOP)) {
// Homing failure: Limit switches are still engaged after pull-off motion
if ( (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET)) || // Safety door or reset issued
if ( (sys_rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET)) || // Safety door or reset issued
(!approach && (limits_get_state() & cycle_mask)) || // Limit switch still engaged after pull-off motion
( approach && (sys.rt_exec_state & EXEC_CYCLE_STOP)) ) { // Limit switch not found during approach.
( approach && (sys_rt_exec_state & EXEC_CYCLE_STOP)) ) { // Limit switch not found during approach.
mc_reset(); // Stop motors, if they are running.
protocol_execute_realtime();
return;
} else {
// Pull-off motion complete. Disable CYCLE_STOP from executing.
bit_false_atomic(sys.rt_exec_state,EXEC_CYCLE_STOP);
bit_false_atomic(sys_rt_exec_state,EXEC_CYCLE_STOP);
break;
}
}
@ -335,7 +335,7 @@ void limits_soft_check(float *target)
// workspace volume so just come to a controlled stop so position is not lost. When complete
// enter alarm mode.
if (sys.state == STATE_CYCLE) {
bit_true_atomic(sys.rt_exec_state, EXEC_FEED_HOLD);
bit_true_atomic(sys_rt_exec_state, EXEC_FEED_HOLD);
do {
protocol_execute_realtime();
if (sys.abort) { return; }
@ -343,7 +343,7 @@ void limits_soft_check(float *target)
}
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_SOFT_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate soft limit critical event
bit_true_atomic(sys_rt_exec_alarm, (EXEC_ALARM_SOFT_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate soft limit critical event
protocol_execute_realtime(); // Execute to enter critical event loop and system abort
return;
}

View File

@ -77,8 +77,8 @@ int main(void)
// Reset system variables.
sys.abort = false;
sys.rt_exec_state = 0;
sys.rt_exec_alarm = 0;
sys_rt_exec_state = 0;
sys_rt_exec_alarm = 0;
sys.suspend = false;
// Start Grbl main loop. Processes program inputs and executes them.

View File

@ -220,7 +220,7 @@ void mc_homing_cycle()
#ifdef LIMITS_TWO_SWITCHES_ON_AXES
if (limits_get_state()) {
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT));
bit_true_atomic(sys_rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT));
return;
}
#endif
@ -276,7 +276,7 @@ void mc_homing_cycle()
// After syncing, check if probe is already triggered. If so, halt and issue alarm.
// NOTE: This probe initialization error applies to all probing cycles.
if ( probe_get_state() ) { // Check probe pin state.
bit_true_atomic(sys.rt_exec_alarm, EXEC_ALARM_PROBE_FAIL);
bit_true_atomic(sys_rt_exec_alarm, EXEC_ALARM_PROBE_FAIL);
protocol_execute_realtime();
}
if (sys.abort) { return; } // Return if system reset has been issued.
@ -289,10 +289,10 @@ void mc_homing_cycle()
#endif
// Activate the probing state monitor in the stepper module.
sys.probe_state = PROBE_ACTIVE;
sys_probe_state = PROBE_ACTIVE;
// Perform probing cycle. Wait here until probe is triggered or motion completes.
bit_true_atomic(sys.rt_exec_state, EXEC_CYCLE_START);
bit_true_atomic(sys_rt_exec_state, EXEC_CYCLE_START);
do {
protocol_execute_realtime();
if (sys.abort) { return; } // Check for system abort
@ -301,13 +301,13 @@ void mc_homing_cycle()
// Probing cycle complete!
// Set state variables and error out, if the probe failed and cycle with error is enabled.
if (sys.probe_state == PROBE_ACTIVE) {
if (is_no_error) { memcpy(sys.probe_position, sys.position, sizeof(float)*N_AXIS); }
else { bit_true_atomic(sys.rt_exec_alarm, EXEC_ALARM_PROBE_FAIL); }
if (sys_probe_state == PROBE_ACTIVE) {
if (is_no_error) { memcpy(sys.probe_position, sys.position, sizeof(sys.position)); }
else { bit_true_atomic(sys_rt_exec_alarm, EXEC_ALARM_PROBE_FAIL); }
} else {
sys.probe_succeeded = true; // Indicate to system the probing cycle completed successfully.
}
sys.probe_state = PROBE_OFF; // Ensure probe state monitor is disabled.
sys_probe_state = PROBE_OFF; // Ensure probe state monitor is disabled.
protocol_execute_realtime(); // Check and execute run-time commands
if (sys.abort) { return; } // Check for system abort
@ -365,8 +365,8 @@ void mc_parking_motion(float *parking_target, float feed_rate)
void mc_reset()
{
// Only this function can set the system reset. Helps prevent multiple kill calls.
if (bit_isfalse(sys.rt_exec_state, EXEC_RESET)) {
bit_true_atomic(sys.rt_exec_state, EXEC_RESET);
if (bit_isfalse(sys_rt_exec_state, EXEC_RESET)) {
bit_true_atomic(sys_rt_exec_state, EXEC_RESET);
// Kill spindle and coolant.
spindle_stop();
@ -378,8 +378,8 @@ void mc_reset()
// violated, by which, all bets are off.
if ((sys.state & (STATE_CYCLE | STATE_HOMING)) ||
(sys.step_control & (STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_PARK))) {
if (sys.state == STATE_HOMING) { bit_true_atomic(sys.rt_exec_alarm, EXEC_ALARM_HOMING_FAIL); }
else { bit_true_atomic(sys.rt_exec_alarm, EXEC_ALARM_ABORT_CYCLE); }
if (sys.state == STATE_HOMING) { bit_true_atomic(sys_rt_exec_alarm, EXEC_ALARM_HOMING_FAIL); }
else { bit_true_atomic(sys_rt_exec_alarm, EXEC_ALARM_ABORT_CYCLE); }
st_go_idle(); // Force kill steppers. Position has likely been lost.
}
}

View File

@ -58,11 +58,11 @@ uint8_t probe_get_state() { return((PROBE_PIN & PROBE_MASK) ^ probe_invert_mask)
// NOTE: This function must be extremely efficient as to not bog down the stepper ISR.
void probe_state_monitor()
{
if (sys.probe_state == PROBE_ACTIVE) {
if (sys_probe_state == PROBE_ACTIVE) {
if (probe_get_state()) {
sys.probe_state = PROBE_OFF;
memcpy(sys.probe_position, sys.position, sizeof(float)*N_AXIS);
bit_true(sys.rt_exec_state, EXEC_MOTION_CANCEL);
sys_probe_state = PROBE_OFF;
memcpy(sys.probe_position, sys.position, sizeof(sys.position));
bit_true(sys_rt_exec_state, EXEC_MOTION_CANCEL);
}
}
}

View File

@ -51,7 +51,7 @@ void protocol_main_loop()
// All systems go! But first check for safety door.
sys.state = STATE_IDLE;
if (system_check_safety_door_ajar()) {
bit_true(sys.rt_exec_state, EXEC_SAFETY_DOOR);
bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR);
protocol_execute_realtime(); // Enter safety door mode. Should return as IDLE state.
}
system_execute_startup(line); // Execute startup script.
@ -190,7 +190,7 @@ void protocol_buffer_synchronize()
// when one of these conditions exist respectively: There are no more blocks sent (i.e. streaming
// is finished, single commands), a command that needs to wait for the motions in the buffer to
// execute calls a buffer sync, or the planner buffer is full and ready to go.
void protocol_auto_cycle_start() { bit_true_atomic(sys.rt_exec_state, EXEC_CYCLE_START); }
void protocol_auto_cycle_start() { bit_true_atomic(sys_rt_exec_state, EXEC_CYCLE_START); }
// This function is the general interface to Grbl's real-time command execution system. It is called
@ -202,7 +202,7 @@ void protocol_auto_cycle_start() { bit_true_atomic(sys.rt_exec_state, EXEC_CYCLE
// handles them, removing the need to define more computationally-expensive volatile variables. This
// also provides a controlled way to execute certain tasks without having two or more instances of
// the same task, such as the planner recalculating the buffer upon a feedhold or overrides.
// NOTE: The sys.rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts,
// NOTE: The sys_rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts,
// limit switches, or the main program.
void protocol_execute_realtime()
{
@ -217,7 +217,7 @@ void protocol_execute_realtime()
void protocol_exec_rt_system()
{
uint8_t rt_exec; // Temp variable to avoid calling volatile multiple times.
rt_exec = sys.rt_exec_alarm; // Copy volatile sys.rt_exec_alarm.
rt_exec = sys_rt_exec_alarm; // Copy volatile sys_rt_exec_alarm.
if (rt_exec) { // Enter only if any bit flag is true
// System alarm. Everything has shutdown by something that has gone severely wrong. Report
// the source of the error to the user. If critical, Grbl disables by entering an infinite
@ -237,7 +237,7 @@ void protocol_exec_rt_system()
// Halt everything upon a critical event flag. Currently hard and soft limits flag this.
if (rt_exec & EXEC_CRITICAL_EVENT) {
report_feedback_message(MESSAGE_CRITICAL_EVENT);
bit_false_atomic(sys.rt_exec_state,EXEC_RESET); // Disable any existing reset
bit_false_atomic(sys_rt_exec_state,EXEC_RESET); // Disable any existing reset
do {
// Block everything, except reset and status reports, until user issues reset or power
// cycles. Hard limits typically occur while unattended or not paying attention. Gives
@ -246,17 +246,17 @@ void protocol_exec_rt_system()
// lost, streaming could cause a serious crash if it continues afterwards.
// TODO: Allow status reports during a critical alarm. Still need to think about implications of this.
// if (sys.rt_exec_state & EXEC_STATUS_REPORT) {
// if (sys_rt_exec_state & EXEC_STATUS_REPORT) {
// report_realtime_status();
// bit_false_atomic(sys.rt_exec_state,EXEC_STATUS_REPORT);
// bit_false_atomic(sys_rt_exec_state,EXEC_STATUS_REPORT);
// }
} while (bit_isfalse(sys.rt_exec_state,EXEC_RESET));
} while (bit_isfalse(sys_rt_exec_state,EXEC_RESET));
}
bit_false_atomic(sys.rt_exec_alarm,0xFF); // Clear all alarm flags
bit_false_atomic(sys_rt_exec_alarm,0xFF); // Clear all alarm flags
}
rt_exec = sys.rt_exec_state; // Copy volatile sys.rt_exec_state.
rt_exec = sys_rt_exec_state; // Copy volatile sys_rt_exec_state.
if (rt_exec) {
// Execute system abort.
@ -268,7 +268,7 @@ void protocol_exec_rt_system()
// Execute and serial print status
if (rt_exec & EXEC_STATUS_REPORT) {
report_realtime_status();
bit_false_atomic(sys.rt_exec_state,EXEC_STATUS_REPORT);
bit_false_atomic(sys_rt_exec_state,EXEC_STATUS_REPORT);
}
// NOTE: The math involved to calculate the hold should be low enough for most, if not all,
@ -340,7 +340,7 @@ void protocol_exec_rt_system()
}
bit_false_atomic(sys.rt_exec_state,(EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR));
bit_false_atomic(sys_rt_exec_state,(EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR));
}
// Execute a cycle start by starting the stepper interrupt to begin executing the blocks in queue.
@ -380,7 +380,7 @@ void protocol_exec_rt_system()
}
}
}
bit_false_atomic(sys.rt_exec_state,EXEC_CYCLE_START);
bit_false_atomic(sys_rt_exec_state,EXEC_CYCLE_START);
}
if (rt_exec & EXEC_CYCLE_STOP) {
@ -399,7 +399,7 @@ void protocol_exec_rt_system()
sys.suspend = SUSPEND_DISABLE;
sys.state = STATE_IDLE;
}
bit_false_atomic(sys.rt_exec_state,EXEC_CYCLE_STOP);
bit_false_atomic(sys_rt_exec_state,EXEC_CYCLE_STOP);
}
}
@ -544,7 +544,7 @@ static void protocol_exec_rt_suspend()
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
sys.suspend |= SUSPEND_RESTORE_COMPLETE;
bit_true_atomic(sys.rt_exec_state,EXEC_CYCLE_START); // Set to resume program.
bit_true_atomic(sys_rt_exec_state,EXEC_CYCLE_START); // Set to resume program.
}
}

View File

@ -337,7 +337,7 @@ void report_gcode_modes()
case MOTION_MODE_NONE : printPgmString(PSTR("G80")); break;
default:
printPgmString(PSTR("G38."));
print_uint8_base10(gc_state.modal.motion - (MOTION_MODE_PROBE_TOWARD+2));
print_uint8_base10(gc_state.modal.motion - (MOTION_MODE_PROBE_TOWARD-2));
}
printPgmString(PSTR(" G"));

View File

@ -89,7 +89,7 @@ void serial_write(uint8_t data) {
// Wait until there is space in the buffer
while (next_head == serial_tx_buffer_tail) {
// TODO: Restructure st_prep_buffer() calls to be executed here during a long print.
if (sys.rt_exec_state & EXEC_RESET) { return; } // Only check for abort to avoid an endless loop.
if (sys_rt_exec_state & EXEC_RESET) { return; } // Only check for abort to avoid an endless loop.
}
// Store data and advance head
@ -164,10 +164,10 @@ ISR(SERIAL_RX)
// Pick off realtime command characters directly from the serial stream. These characters are
// not passed into the buffer, but these set system state flag bits for realtime execution.
switch (data) {
case CMD_STATUS_REPORT: bit_true_atomic(sys.rt_exec_state, EXEC_STATUS_REPORT); break; // Set as true
case CMD_CYCLE_START: bit_true_atomic(sys.rt_exec_state, EXEC_CYCLE_START); break; // Set as true
case CMD_FEED_HOLD: bit_true_atomic(sys.rt_exec_state, EXEC_FEED_HOLD); break; // Set as true
case CMD_SAFETY_DOOR: bit_true_atomic(sys.rt_exec_state, EXEC_SAFETY_DOOR); break; // Set as true
case CMD_STATUS_REPORT: bit_true_atomic(sys_rt_exec_state, EXEC_STATUS_REPORT); break; // Set as true
case CMD_CYCLE_START: bit_true_atomic(sys_rt_exec_state, EXEC_CYCLE_START); break; // Set as true
case CMD_FEED_HOLD: bit_true_atomic(sys_rt_exec_state, EXEC_FEED_HOLD); break; // Set as true
case CMD_SAFETY_DOOR: bit_true_atomic(sys_rt_exec_state, EXEC_SAFETY_DOOR); break; // Set as true
case CMD_RESET: mc_reset(); break; // Call motion control reset routine.
default: // Write character to buffer
next_head = serial_rx_buffer_head + 1;

View File

@ -229,7 +229,7 @@ void st_go_idle()
// Set stepper driver idle state, disabled or enabled, depending on settings and circumstances.
bool pin_state = false; // Keep enabled.
if (((settings.stepper_idle_lock_time != 0xff) || sys.rt_exec_alarm) && sys.state != STATE_HOMING) {
if (((settings.stepper_idle_lock_time != 0xff) || sys_rt_exec_alarm) && sys.state != STATE_HOMING) {
// Force stepper dwell to lock axes for a defined amount of time to ensure the axes come to a complete
// stop and not drift from residual inertial forces at the end of the last movement.
delay_ms(settings.stepper_idle_lock_time);
@ -349,7 +349,7 @@ ISR(TIMER1_COMPA_vect)
} else {
// Segment buffer empty. Shutdown.
st_go_idle();
bit_true_atomic(sys.rt_exec_state,EXEC_CYCLE_STOP); // Flag main program for cycle end
bit_true_atomic(sys_rt_exec_state,EXEC_CYCLE_STOP); // Flag main program for cycle end
return; // Nothing to do but exit.
}
}

View File

@ -49,13 +49,13 @@ ISR(CONTROL_INT_vect)
if (bit_istrue(pin,bit(RESET_BIT))) {
mc_reset();
} else if (bit_istrue(pin,bit(CYCLE_START_BIT))) {
bit_true(sys.rt_exec_state, EXEC_CYCLE_START);
bit_true(sys_rt_exec_state, EXEC_CYCLE_START);
#ifndef ENABLE_SAFETY_DOOR_INPUT_PIN
} else if (bit_istrue(pin,bit(FEED_HOLD_BIT))) {
bit_true(sys.rt_exec_state, EXEC_FEED_HOLD);
bit_true(sys_rt_exec_state, EXEC_FEED_HOLD);
#else
} else if (bit_istrue(pin,bit(SAFETY_DOOR_BIT))) {
bit_true(sys.rt_exec_state, EXEC_SAFETY_DOOR);
bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR);
#endif
}
}

View File

@ -85,19 +85,19 @@ typedef struct {
uint8_t suspend; // System suspend bitflag variable that manages holds, cancels, and safety door.
uint8_t step_control;
volatile uint8_t rt_exec_state; // Global realtime executor bitflag variable for state management. See EXEC bitmasks.
volatile uint8_t rt_exec_alarm; // Global realtime executor bitflag variable for setting various alarms.
int32_t position[N_AXIS]; // Real-time machine (aka home) position vector in steps.
// NOTE: This may need to be a volatile variable, if problems arise.
uint8_t homing_axis_lock; // Locks axes when limits engage. Used as an axis motion mask in the stepper ISR.
volatile uint8_t probe_state; // Probing state value. Used to coordinate the probing cycle with stepper ISR.
int32_t probe_position[N_AXIS]; // Last probe position in machine coordinates and steps.
uint8_t probe_succeeded; // Tracks if last probing cycle was successful.
uint8_t homing_axis_lock; // Locks axes when limits engage. Used as an axis motion mask in the stepper ISR.
} system_t;
extern system_t sys;
volatile uint8_t sys_probe_state; // Probing state value. Used to coordinate the probing cycle with stepper ISR.
volatile uint8_t sys_rt_exec_state; // Global realtime executor bitflag variable for state management. See EXEC bitmasks.
volatile uint8_t sys_rt_exec_alarm; // Global realtime executor bitflag variable for setting various alarms.
// Initialize the serial protocol
void system_init();