arc code complete with support for both R and IJK style blocks
This commit is contained in:
parent
e21064bd86
commit
9799955555
@ -244,160 +244,6 @@ class CircleTest
|
||||
return {:tx => tx, :ty => ty, :x => x, :y => y}
|
||||
end
|
||||
|
||||
# A DDA-direct search circle interpolator unrolled for each octant. Optimal and impure
|
||||
def arc_unrolled(theta, angular_travel, radius)
|
||||
radius = radius
|
||||
x = (sin(theta)*radius).round
|
||||
y = (cos(theta)*radius).round
|
||||
angular_direction = angular_travel.sign
|
||||
tx = (sin(theta+angular_travel)*(radius-0.5)).floor
|
||||
ty = (cos(theta+angular_travel)*(radius-0.5)).floor
|
||||
f = (x**2 + y**2 - radius**2).round
|
||||
x2 = 2*x
|
||||
y2 = 2*y
|
||||
dx = (y==0) ? -x.sign : y.sign*angular_direction
|
||||
dy = (x==0) ? -y.sign : -x.sign*angular_direction
|
||||
|
||||
max_steps = (angular_travel.abs*radius*2).floor
|
||||
|
||||
# Quandrants of the circls
|
||||
# \ 1|2 /
|
||||
# 8\ | / 3
|
||||
# \|/
|
||||
# ---------|-----------
|
||||
# 7 /|\ 4
|
||||
# / | \
|
||||
# / 6 | 5 \
|
||||
#
|
||||
#
|
||||
#
|
||||
|
||||
if angular_direction>0 # clockwise
|
||||
if x.abs<y.abs # quad 1,2,6,5
|
||||
if y>0 # quad 1,2
|
||||
while x<0 # quad 1 x+,y+
|
||||
x += 1
|
||||
f += 1+x2
|
||||
x2 += 2
|
||||
f_diagonal = f + 1 + y2
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
y += 1
|
||||
y2 += 2
|
||||
f = f_diagonal
|
||||
end
|
||||
end
|
||||
while x>=0 # quad 2, x+, y-
|
||||
x += 1
|
||||
f += 1+x2
|
||||
x2 += 2
|
||||
f_diagonal = f + 1 - y2
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
y -= 1
|
||||
y2 -= 2
|
||||
f = f_diagonal
|
||||
end
|
||||
end
|
||||
end
|
||||
if y<=0 # quad 6, 5
|
||||
while x<0 # quad 6 x-, y+
|
||||
x -= 1
|
||||
f += 1-x2
|
||||
x2 -= 2
|
||||
f_diagonal = f + 1 + y2
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
y += 1
|
||||
y2 += 2
|
||||
f = f_diagonal
|
||||
end
|
||||
end
|
||||
while x>=0 # quad 5 x-, y-
|
||||
x -= 1
|
||||
f += 1-x2
|
||||
x2 -= 2
|
||||
f_diagonal = f + 1 - y2
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
y -= 1
|
||||
y2 -= 2
|
||||
f = f_diagonal
|
||||
end
|
||||
end
|
||||
end
|
||||
# Quandrants of the circls
|
||||
# \ 1|2 /
|
||||
# 8\ | / 3
|
||||
# \|/
|
||||
# ---------|-----------
|
||||
# 7 /|\ 4
|
||||
# / | \
|
||||
# / 6 | 5 \
|
||||
else 3 # quad 3,4,7,8
|
||||
if x>0 # quad 3,4
|
||||
while y>0 # quad 3 x+,y+
|
||||
x += 1
|
||||
f += 1+x2
|
||||
x2 += 2
|
||||
f_diagonal = f + 1 + y2
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
y += 1
|
||||
y2 += 2
|
||||
f = f_diagonal
|
||||
end
|
||||
end
|
||||
while x>=0 # quad 2, x+, y-
|
||||
x += 1
|
||||
f += 1+x2
|
||||
x2 += 2
|
||||
f_diagonal = f + 1 - y2
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
y -= 1
|
||||
y2 -= 2
|
||||
f = f_diagonal
|
||||
end
|
||||
end
|
||||
end
|
||||
if y<=0 # quad 6, 5
|
||||
while x<0 # quad 6 x-, y+
|
||||
x -= 1
|
||||
f += 1-x2
|
||||
x2 -= 2
|
||||
f_diagonal = f + 1 + y2
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
y += 1
|
||||
y2 += 2
|
||||
f = f_diagonal
|
||||
end
|
||||
end
|
||||
while x>=0 # quad 5 x-, y-
|
||||
x -= 1
|
||||
f += 1-x2
|
||||
x2 -= 2
|
||||
f_diagonal = f + 1 - y2
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
y -= 1
|
||||
y2 -= 2
|
||||
f = f_diagonal
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
else
|
||||
y += dy
|
||||
f += 1+y2*dy
|
||||
y2 += 2*dy
|
||||
f_diagonal = f + 1 + x2*dx
|
||||
if (f.abs >= f_diagonal.abs)
|
||||
x += dx
|
||||
dy = -x.sign*angular_direction unless x == 0
|
||||
x2 += 2*dx
|
||||
f = f_diagonal
|
||||
end
|
||||
dx = y.sign*angular_direction unless y == 0
|
||||
end
|
||||
break if x*ty.sign*angular_direction>=tx*ty.sign*angular_direction && y*tx.sign*angular_direction<=ty*tx.sign*angular_direction
|
||||
end
|
||||
plot_pixel(tx+20, -ty+20, "o")
|
||||
return {:tx => tx, :ty => ty, :x => x, :y => y}
|
||||
end
|
||||
|
||||
|
||||
end
|
||||
@ -405,16 +251,16 @@ end
|
||||
test = CircleTest.new
|
||||
test.init
|
||||
|
||||
#test.arc_clean(0, Math::PI*2, 5)
|
||||
(1..10000).each do |r|
|
||||
test.init
|
||||
data = test.arc_supaoptimal(2.9, Math::PI*1, r)
|
||||
if (data[:tx]-data[:x]).abs > 1 || (data[:ty]-data[:y]).abs > 1
|
||||
puts "r=#{r} fails target control"
|
||||
pp data
|
||||
puts
|
||||
end
|
||||
end
|
||||
test.arc_clean(0, Math::PI*2, 3)
|
||||
# (1..10000).each do |r|
|
||||
# test.init
|
||||
# data = test.arc_supaoptimal(2.9, Math::PI*1, r)
|
||||
# if (data[:tx]-data[:x]).abs > 1 || (data[:ty]-data[:y]).abs > 1
|
||||
# puts "r=#{r} fails target control"
|
||||
# pp data
|
||||
# puts
|
||||
# end
|
||||
# end
|
||||
|
||||
# test.init
|
||||
# data = test.arc_supaoptimal(1.1, -Math::PI, 19)
|
||||
|
3
config.h
3
config.h
@ -68,4 +68,7 @@
|
||||
|
||||
#define BAUD_RATE 14400
|
||||
|
||||
// Unrolling the arc code is faster, but costs about 830 bytes of extra code space.
|
||||
// #define UNROLLED_ARC_LOOP
|
||||
|
||||
#endif
|
||||
|
111
gcode.c
111
gcode.c
@ -241,25 +241,100 @@ uint8_t gc_execute_line(char *line) {
|
||||
break;
|
||||
case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC:
|
||||
if (radius_mode) {
|
||||
// To be implemented
|
||||
} else { // ijk-mode
|
||||
// calculate the theta (angle) of the current point
|
||||
double theta_start = theta(-offset[state.plane_axis_0], -offset[state.plane_axis_1]);
|
||||
// calculate the theta (angle) of the target point
|
||||
double theta_end = theta(target[state.plane_axis_0] - offset[state.plane_axis_0] - state.position[state.plane_axis_0],
|
||||
target[state.plane_axis_1] - offset[state.plane_axis_1] - state.position[state.plane_axis_1]);
|
||||
// ensure that the difference is positive so that we have clockwise travel
|
||||
if (theta_end < theta_start) { theta_end += 2*M_PI; }
|
||||
double angular_travel = fabs(theta_end-theta_start);
|
||||
// Invert angular motion if we want a counter clockwise arc
|
||||
if (next_action == MOTION_MODE_CCW_ARC) {
|
||||
angular_travel = angular_travel-2*M_PI;
|
||||
}
|
||||
// Find the radius
|
||||
double radius = hypot(offset[state.plane_axis_0], offset[state.plane_axis_1]);
|
||||
// Prepare the arc
|
||||
mc_arc(theta_start, angular_travel, radius, state.plane_axis_0, state.plane_axis_1, state.feed_rate);
|
||||
/*
|
||||
We need to calculate the center of the circle that has the designated radius and passes
|
||||
through both the current position and the target position. This method calculates the following
|
||||
set of equations where [x,y] is the vector from current to target position, d == distance of
|
||||
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
|
||||
the center of the travel vector. This is the distance from the center of the travel vector
|
||||
to the center of our circle. A perpendicular to the travel vector is scaled to the length of
|
||||
h and added to the center of the travel vector to form the new point [i,j] which will be
|
||||
the center of our circle.
|
||||
|
||||
d^2 == x^2 + y^2
|
||||
h^2 == r^2 + (d/2)^2
|
||||
i == x/2 - y/d*h
|
||||
j == y/2 + x/d*h
|
||||
|
||||
O <- [i,j]
|
||||
- |
|
||||
r - |
|
||||
- |
|
||||
- | h
|
||||
- |
|
||||
[0,0] -> C -----------------+--------------- T <- [x,y]
|
||||
| <------ d/2 ---->|
|
||||
|
||||
C - Current position
|
||||
T - Target position
|
||||
O - center of circle that pass through both C and T
|
||||
d - distance from C to T
|
||||
r - designated radius
|
||||
h - distance from center of CT to O
|
||||
|
||||
Expanding the equations:
|
||||
|
||||
h = sqrt(4 r^2 + x^2 + y^2)/2
|
||||
d = sqrt(x^2 + y^2)
|
||||
i = x/2 - (h * y)/d
|
||||
j = y/2 + (h * x)/d
|
||||
|
||||
Which can be written:
|
||||
|
||||
i = (x - (y * sqrt(4 * r^2 + x^2 + y^2))/sqrt(x^2 + y^2))/2
|
||||
j = (y + (x * sqrt(4 * r^2 + x^2 + y^2))/sqrt(x^2 + y^2))/2
|
||||
|
||||
Which can be optimized to:
|
||||
|
||||
h_x2_div_d = sqrt(4 * r^2 + x^2 + y^2)/sqrt(x^2 + y^2)
|
||||
i = (x - (y * h_x2_div_d))/2
|
||||
j = (y + (x * h_x2_div_d))/2
|
||||
|
||||
*/
|
||||
|
||||
// Calculate the change in position along each selected axis
|
||||
double x = target[state.plane_axis_0]-state.position[state.plane_axis_0];
|
||||
double y = target[state.plane_axis_1]-state.position[state.plane_axis_1];
|
||||
clear_vector(&offset);
|
||||
double h_x2_div_d = sqrt(4*r*r + x*x + y*y)/hypot(x,y); // == h * 2 / d
|
||||
// The anti-clockwise circle lies to the right of the target direction. When offset is positive,
|
||||
// the left hand circle will be generated - when it is negative the right hand circle is generated.
|
||||
if (state.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
|
||||
offset[state.plane_axis_0] = (x-(y*h_x2_div_d))/2;
|
||||
offset[state.plane_axis_1] = (y+(x*h_x2_div_d))/2;
|
||||
}
|
||||
|
||||
/*
|
||||
This segment sets up an clockwise or counterclockwise arc from the current position to the target position around
|
||||
the center designated by the offset vector. All theta-values measured in radians of deviance from the positive
|
||||
y-axis.
|
||||
|
||||
| <- theta == 0
|
||||
* * *
|
||||
* *
|
||||
* *
|
||||
* O ----T <- theta == theta_end (e.g. 90 degrees: theta == PI/2)
|
||||
* /
|
||||
C <- theta == theta_start (e.g. -145 degrees: theta == -PI*(3/4))
|
||||
|
||||
*/
|
||||
|
||||
// calculate the theta (angle) of the current point
|
||||
double theta_start = theta(-offset[state.plane_axis_0], -offset[state.plane_axis_1]);
|
||||
// calculate the theta (angle) of the target point
|
||||
double theta_end = theta(target[state.plane_axis_0] - offset[state.plane_axis_0] - state.position[state.plane_axis_0],
|
||||
target[state.plane_axis_1] - offset[state.plane_axis_1] - state.position[state.plane_axis_1]);
|
||||
// ensure that the difference is positive so that we have clockwise travel
|
||||
if (theta_end < theta_start) { theta_end += 2*M_PI; }
|
||||
double angular_travel = theta_end-theta_start;
|
||||
// Invert angular motion if the g-code wanted a counterclockwise arc
|
||||
if (state.motion_mode == MOTION_MODE_CCW_ARC) {
|
||||
angular_travel = angular_travel-2*M_PI;
|
||||
}
|
||||
// Find the radius
|
||||
double radius = hypot(offset[state.plane_axis_0], offset[state.plane_axis_1]);
|
||||
// Prepare the arc
|
||||
mc_arc(theta_start, angular_travel, radius, state.plane_axis_0, state.plane_axis_1, state.feed_rate);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -36,7 +36,3 @@ double theta(double x, double y)
|
||||
}
|
||||
}
|
||||
|
||||
double hypot(double x, double y)
|
||||
{
|
||||
sqrt(x*x + y*y);
|
||||
}
|
||||
|
@ -24,7 +24,4 @@
|
||||
// Find the angle from the positive y axis to the given point with respect to origo.
|
||||
double theta(double x, double y);
|
||||
|
||||
// Find the distance from origo to point [x,y]
|
||||
double hypot(double x, double y);
|
||||
|
||||
#endif
|
@ -58,6 +58,7 @@ struct ArcMotionParameters {
|
||||
uint8_t axis_x, axis_y; // maps the arc axes to stepper axes
|
||||
int32_t target[3]; // The target position in absolute steps
|
||||
int8_t plane_steppers[3]; // A vector with the steppers of axis_x and axis_y set to 1, the remaining 0
|
||||
int incomplete; // True if the arc has not reached its target yet
|
||||
};
|
||||
|
||||
/* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to
|
||||
@ -81,6 +82,7 @@ uint8_t direction_bits; // The direction bits to be used with any upcoming step-
|
||||
void set_stepper_directions(int8_t *direction);
|
||||
inline void step_steppers(uint8_t *enabled);
|
||||
inline void step_axis(uint8_t axis);
|
||||
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
|
||||
|
||||
void mc_init()
|
||||
{
|
||||
@ -98,11 +100,13 @@ void mc_dwell(uint32_t milliseconds)
|
||||
// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement.
|
||||
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
||||
{
|
||||
state.mode = MC_MODE_LINEAR;
|
||||
state.linear.target[X_AXIS] = trunc(x*X_STEPS_PER_MM);
|
||||
state.linear.target[Y_AXIS] = trunc(y*Y_STEPS_PER_MM);
|
||||
state.linear.target[Z_AXIS] = trunc(z*Z_STEPS_PER_MM);
|
||||
prepare_linear_motion(trunc(x*X_STEPS_PER_MM), trunc(y*Y_STEPS_PER_MM), trunc(z*Z_STEPS_PER_MM), feed_rate, invert_feed_rate);
|
||||
}
|
||||
|
||||
// Same as mc_linear_motion but accepts target in absolute step coordinates
|
||||
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate)
|
||||
{
|
||||
state.mode = MC_MODE_LINEAR;
|
||||
uint8_t axis; // loop variable
|
||||
|
||||
// Determine direction and travel magnitude for each axis
|
||||
@ -202,6 +206,7 @@ void mc_arc(double theta, double angular_travel, double radius, int axis_1, int
|
||||
// mm/second -> microseconds/step. Assumes all axes have the same steps/mm as the x axis
|
||||
state.pace =
|
||||
ONE_MINUTE_OF_MICROSECONDS / (feed_rate * X_STEPS_PER_MM);
|
||||
state.arc.incomplete = true;
|
||||
}
|
||||
|
||||
#define check_arc_target \
|
||||
@ -209,7 +214,7 @@ void mc_arc(double theta, double angular_travel, double radius, int axis_1, int
|
||||
state.arc.target_x * state.arc.target_direction_y) && \
|
||||
(state.arc.y * state.arc.target_direction_x <= \
|
||||
state.arc.target_y * state.arc.target_direction_x)) \
|
||||
{ state.mode = MC_MODE_AT_REST; }
|
||||
{ state.arc.incomplete = false; }
|
||||
|
||||
// Internal method used by execute_arc to trace horizontally in the general direction provided by dx and dy
|
||||
void step_arc_along_x(int8_t dx, int8_t dy)
|
||||
@ -259,6 +264,8 @@ void map_local_arc_directions_to_stepper_directions(int8_t dx, int8_t dy)
|
||||
set_stepper_directions(direction);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
Quandrants of the arc
|
||||
\ 7|0 /
|
||||
@ -269,6 +276,7 @@ void map_local_arc_directions_to_stepper_directions(int8_t dx, int8_t dy)
|
||||
/ | \
|
||||
x- / 4|3 \ x+ */
|
||||
|
||||
#ifdef UNROLLED_ARC_LOOP // This function only used by the unrolled arc loop
|
||||
// Determine within which quadrant of the circle the provided coordinate falls
|
||||
int quadrant(uint32_t x,uint32_t y)
|
||||
{
|
||||
@ -289,70 +297,93 @@ int quadrant(uint32_t x,uint32_t y)
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Will trace the configured arc until the target is reached. Slightly unrolled for speed.
|
||||
// Will trace the configured arc until the target is reached.
|
||||
void execute_arc()
|
||||
{
|
||||
int q = quadrant(state.arc.x, state.arc.y);
|
||||
uint32_t start_x = state.arc.x;
|
||||
uint32_t start_y = state.arc.y;
|
||||
int dx, dy; // Trace directions
|
||||
|
||||
// state.mode is set to 0 (MC_MODE_AT_REST) when target is reached
|
||||
while(state.mode == MC_MODE_ARC)
|
||||
while(state.arc.incomplete)
|
||||
{
|
||||
#ifdef UNROLLED_ARC_LOOP
|
||||
// Unrolling the arc code is fast, but costs about 830 bytes of extra code space.
|
||||
int q = quadrant(state.arc.x, state.arc.y);
|
||||
if (state.arc.angular_direction) {
|
||||
switch (q) {
|
||||
case 0:
|
||||
map_local_arc_directions_to_stepper_directions(1,-1);
|
||||
while(state.mode && (state.arc.x>state.arc.y)) { step_arc_along_x(1,-1); }
|
||||
while(state.arc.incomplete && (state.arc.x>state.arc.y)) { step_arc_along_x(1,-1); }
|
||||
case 1:
|
||||
map_local_arc_directions_to_stepper_directions(1,-1);
|
||||
while(state.mode && (state.arc.y>0)) { step_arc_along_y(1,-1); }
|
||||
while(state.arc.incomplete && (state.arc.y>0)) { step_arc_along_y(1,-1); }
|
||||
case 2:
|
||||
map_local_arc_directions_to_stepper_directions(-1,-1);
|
||||
while(state.mode && (state.arc.y>-state.arc.x)) { step_arc_along_y(-1,-1); }
|
||||
while(state.arc.incomplete && (state.arc.y>-state.arc.x)) { step_arc_along_y(-1,-1); }
|
||||
case 3:
|
||||
map_local_arc_directions_to_stepper_directions(-1,-1);
|
||||
while(state.mode && (state.arc.x>0)) { step_arc_along_x(-1,-1); }
|
||||
while(state.arc.incomplete && (state.arc.x>0)) { step_arc_along_x(-1,-1); }
|
||||
case 4:
|
||||
map_local_arc_directions_to_stepper_directions(-1,1);
|
||||
while(state.mode && (state.arc.y<state.arc.x)) { step_arc_along_x(-1,1); }
|
||||
while(state.arc.incomplete && (state.arc.y<state.arc.x)) { step_arc_along_x(-1,1); }
|
||||
case 5:
|
||||
map_local_arc_directions_to_stepper_directions(-1,1);
|
||||
while(state.mode && (state.arc.y<0)) { step_arc_along_y(-1,1); }
|
||||
while(state.arc.incomplete && (state.arc.y<0)) { step_arc_along_y(-1,1); }
|
||||
case 6:
|
||||
map_local_arc_directions_to_stepper_directions(1,-1);
|
||||
while(state.mode && (state.arc.y<-state.arc.x)) { step_arc_along_y(1,1); }
|
||||
while(state.arc.incomplete && (state.arc.y<-state.arc.x)) { step_arc_along_y(1,1); }
|
||||
case 7:
|
||||
map_local_arc_directions_to_stepper_directions(1,1);
|
||||
while(state.mode && (state.arc.x<0)) { step_arc_along_x(1,1); }
|
||||
while(state.arc.incomplete && (state.arc.x<0)) { step_arc_along_x(1,1); }
|
||||
}
|
||||
} else {
|
||||
switch (q) {
|
||||
case 7:
|
||||
map_local_arc_directions_to_stepper_directions(-1,-1);
|
||||
while(state.mode && (state.arc.y>-state.arc.x)) { step_arc_along_x(-1,-1); }
|
||||
while(state.arc.incomplete && (state.arc.y>-state.arc.x)) { step_arc_along_x(-1,-1); }
|
||||
case 6:
|
||||
map_local_arc_directions_to_stepper_directions(-1,-1);
|
||||
while(state.mode && (state.arc.y>0)) { step_arc_along_y(-1,-1); }
|
||||
while(state.arc.incomplete && (state.arc.y>0)) { step_arc_along_y(-1,-1); }
|
||||
case 5:
|
||||
map_local_arc_directions_to_stepper_directions(1,-1);
|
||||
while(state.mode && (state.arc.y>state.arc.x)) { step_arc_along_y(1,-1); }
|
||||
while(state.arc.incomplete && (state.arc.y>state.arc.x)) { step_arc_along_y(1,-1); }
|
||||
case 4:
|
||||
map_local_arc_directions_to_stepper_directions(1,-1);
|
||||
while(state.mode && (state.arc.x<0)) { step_arc_along_x(1,-1); }
|
||||
while(state.arc.incomplete && (state.arc.x<0)) { step_arc_along_x(1,-1); }
|
||||
case 3:
|
||||
map_local_arc_directions_to_stepper_directions(1,1);
|
||||
while(state.mode && (state.arc.y<-state.arc.x)) { step_arc_along_x(1,1); }
|
||||
while(state.arc.incomplete && (state.arc.y<-state.arc.x)) { step_arc_along_x(1,1); }
|
||||
case 2:
|
||||
map_local_arc_directions_to_stepper_directions(1,1);
|
||||
while(state.mode && (state.arc.y<0)) { step_arc_along_y(1,1); }
|
||||
while(state.arc.incomplete && (state.arc.y<0)) { step_arc_along_y(1,1); }
|
||||
case 1:
|
||||
map_local_arc_directions_to_stepper_directions(-1,1);
|
||||
while(state.mode && (state.arc.y<state.arc.x)) { step_arc_along_y(-1,1); }
|
||||
while(state.arc.incomplete && (state.arc.y<state.arc.x)) { step_arc_along_y(-1,1); }
|
||||
case 0:
|
||||
map_local_arc_directions_to_stepper_directions(-1,1);
|
||||
while(state.mode && (state.arc.x>0)) { step_arc_along_x(-1,1); }
|
||||
while(state.arc.incomplete && (state.arc.x>0)) { step_arc_along_x(-1,1); }
|
||||
}
|
||||
}
|
||||
#else
|
||||
dx = (state.arc.y!=0) ? sign(state.arc.y) * state.arc.angular_direction : -sign(state.arc.x);
|
||||
dy = (state.arc.x!=0) ? -sign(state.arc.x) * state.arc.angular_direction : -sign(state.arc.y);
|
||||
if (fabs(state.arc.x)<fabs(state.arc.y)) {
|
||||
step_arc_along_x(dx,dy);
|
||||
} else {
|
||||
step_arc_along_y(dx,dy);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
// Update the tool position to the new actual position
|
||||
state.position[state.arc.axis_x] += state.arc.x-start_x;
|
||||
state.position[state.arc.axis_y] += state.arc.y-start_y;
|
||||
// Because of rounding errors we might be off by a step or two. Adjust for this
|
||||
// To be implemented
|
||||
//void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate)
|
||||
|
||||
}
|
||||
|
||||
void mc_go_home()
|
||||
|
Loading…
Reference in New Issue
Block a user