gcode support for offset arcs
This commit is contained in:
parent
cb6b32f982
commit
e21064bd86
2
Makefile
2
Makefile
@ -30,7 +30,7 @@
|
||||
DEVICE = atmega168
|
||||
CLOCK = 20000000
|
||||
PROGRAMMER = -c avrisp2 -P usb
|
||||
OBJECTS = main.o motion_control.o gcode.o spindle_control.o wiring_serial.o serial_protocol.o stepper.o
|
||||
OBJECTS = main.o motion_control.o gcode.o spindle_control.o wiring_serial.o serial_protocol.o stepper.o geometry.o
|
||||
FUSES = -U hfuse:w:0xd9:m -U lfuse:w:0x24:m
|
||||
|
||||
# Tune the lines below only if you know what you are doing:
|
||||
|
16
arc_algorithm/theta.rb
Normal file
16
arc_algorithm/theta.rb
Normal file
@ -0,0 +1,16 @@
|
||||
require 'pp'
|
||||
include Math
|
||||
|
||||
def calc_theta(x,y)
|
||||
theta = atan(1.0*x/y.abs)
|
||||
return(theta) if(y>0)
|
||||
if (theta>0)
|
||||
return(PI-theta)
|
||||
else
|
||||
return(-PI-theta)
|
||||
end
|
||||
end
|
||||
|
||||
(-180..180).each do |deg|
|
||||
pp [deg, calc_theta(sin(1.0*deg/180*PI), cos(1.0*deg/180*PI))/PI*180]
|
||||
end
|
58
gcode.c
58
gcode.c
@ -50,6 +50,7 @@
|
||||
#include "config.h"
|
||||
#include "motion_control.h"
|
||||
#include "spindle_control.h"
|
||||
#include "geometry.h"
|
||||
|
||||
#define NEXT_ACTION_DEFAULT 0
|
||||
#define NEXT_ACTION_DWELL 1
|
||||
@ -61,10 +62,6 @@
|
||||
#define MOTION_MODE_CCW_ARC 3 // G3
|
||||
#define MOTION_MODE_CANCEL 4 // G80
|
||||
|
||||
#define PLANE_XY 0; // G17
|
||||
#define PLANE_XZ 1; // G18
|
||||
#define PLANE_YZ 2; // G19
|
||||
|
||||
#define PATH_CONTROL_MODE_EXACT_PATH 0
|
||||
#define PATH_CONTROL_MODE_EXACT_STOP 1
|
||||
#define PATH_CONTROL_MODE_CONTINOUS 2
|
||||
@ -84,21 +81,22 @@ struct ParserState {
|
||||
|
||||
uint8_t motion_mode:3; /* {G0, G1, G2, G3, G38.2, G80, G81, G82, G83, G84, G85, G86, G87, G88, G89} */
|
||||
uint8_t inverse_feed_rate_mode:1; /* G93, G94 */
|
||||
uint8_t plane:2; /* {G17, G18, G19} */
|
||||
uint8_t inches_mode:1; /* 0 = millimeter mode, 1 = inches mode {G20, G21} */
|
||||
uint8_t program_flow:2;
|
||||
int spindle_direction:2;
|
||||
double feed_rate; /* Millimeters/second */
|
||||
double logical_position[3]; /* Where the interpreter considers the tool to be at this point in the code */
|
||||
double position[3]; /* Where the interpreter considers the tool to be at this point in the code */
|
||||
uint8_t tool;
|
||||
int16_t spindle_speed; /* RPM/100 */
|
||||
uint8_t plane_axis_0, plane_axis_1; // The axes of the selected plane
|
||||
|
||||
};
|
||||
struct ParserState state;
|
||||
|
||||
#define FAIL(status) state.status_code = status;
|
||||
|
||||
int read_double(char *line, //!< string: line of RS274/NGC code being processed
|
||||
int *counter, //!< pointer to a counter for logical_position on the line
|
||||
int *counter, //!< pointer to a counter for position on the line
|
||||
double *double_ptr); //!< pointer to double to be read
|
||||
|
||||
int next_statement(char *letter, double *double_ptr, char *line, int *counter);
|
||||
@ -113,6 +111,12 @@ inline float to_millimeters(double value) {
|
||||
return(state.inches_mode ? value * INCHES_PER_MM : value);
|
||||
}
|
||||
|
||||
void select_plane(uint8_t axis_0, uint8_t axis_1)
|
||||
{
|
||||
state.plane_axis_0 = axis_0;
|
||||
state.plane_axis_1 = axis_1;
|
||||
}
|
||||
|
||||
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
|
||||
// characters and signed floats (no whitespace).
|
||||
uint8_t gc_execute_line(char *line) {
|
||||
@ -121,6 +125,7 @@ uint8_t gc_execute_line(char *line) {
|
||||
double value;
|
||||
double unit_converted_value;
|
||||
double inverse_feed_rate;
|
||||
int radius_mode;
|
||||
|
||||
uint8_t absolute_mode; /* 0 = relative motion, 1 = absolute motion {G90, G91} */
|
||||
uint8_t next_action = NEXT_ACTION_DEFAULT; /* One of the NEXT_ACTION_-constants */
|
||||
@ -149,9 +154,9 @@ uint8_t gc_execute_line(char *line) {
|
||||
case 2: state.motion_mode = MOTION_MODE_CW_ARC; break;
|
||||
case 3: state.motion_mode = MOTION_MODE_CCW_ARC; break;
|
||||
case 4: next_action = NEXT_ACTION_DWELL; break;
|
||||
case 17: state.plane = PLANE_XY; break;
|
||||
case 18: state.plane = PLANE_XZ; break;
|
||||
case 19: state.plane = PLANE_YZ; break;
|
||||
case 17: select_plane(X_AXIS, Y_AXIS); break;
|
||||
case 18: select_plane(X_AXIS, Z_AXIS); break;
|
||||
case 19: select_plane(Y_AXIS, Z_AXIS); break;
|
||||
case 20: state.inches_mode = true; break;
|
||||
case 21: state.inches_mode = false; break;
|
||||
case 28: case 30: next_action = NEXT_ACTION_GO_HOME; break;
|
||||
@ -197,14 +202,14 @@ uint8_t gc_execute_line(char *line) {
|
||||
break;
|
||||
case 'I': case 'J': case 'K': offset[letter-'I'] = unit_converted_value; break;
|
||||
case 'P': p = value; break;
|
||||
case 'R': r = unit_converted_value; break;
|
||||
case 'R': r = unit_converted_value; radius_mode = true; break;
|
||||
case 'S': state.spindle_speed = value; break;
|
||||
case 'X': case 'Y': case 'Z':
|
||||
axis = letter - 'X';
|
||||
if (absolute_mode) {
|
||||
target[axis] = unit_converted_value;
|
||||
} else {
|
||||
target[axis] = state.logical_position[axis]+unit_converted_value;
|
||||
target[axis] = state.position[axis]+unit_converted_value;
|
||||
};
|
||||
break;
|
||||
}
|
||||
@ -235,17 +240,36 @@ uint8_t gc_execute_line(char *line) {
|
||||
}
|
||||
break;
|
||||
case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC:
|
||||
// to be implemented
|
||||
if (radius_mode) {
|
||||
// To be implemented
|
||||
} else { // ijk-mode
|
||||
// calculate the theta (angle) of the current point
|
||||
double theta_start = theta(-offset[state.plane_axis_0], -offset[state.plane_axis_1]);
|
||||
// calculate the theta (angle) of the target point
|
||||
double theta_end = theta(target[state.plane_axis_0] - offset[state.plane_axis_0] - state.position[state.plane_axis_0],
|
||||
target[state.plane_axis_1] - offset[state.plane_axis_1] - state.position[state.plane_axis_1]);
|
||||
// ensure that the difference is positive so that we have clockwise travel
|
||||
if (theta_end < theta_start) { theta_end += 2*M_PI; }
|
||||
double angular_travel = fabs(theta_end-theta_start);
|
||||
// Invert angular motion if we want a counter clockwise arc
|
||||
if (next_action == MOTION_MODE_CCW_ARC) {
|
||||
angular_travel = angular_travel-2*M_PI;
|
||||
}
|
||||
// Find the radius
|
||||
double radius = hypot(offset[state.plane_axis_0], offset[state.plane_axis_1]);
|
||||
// Prepare the arc
|
||||
mc_arc(theta_start, angular_travel, radius, state.plane_axis_0, state.plane_axis_1, state.feed_rate);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
mc_execute();
|
||||
|
||||
// As far as the parser is concerned, the logical_position is now == target. In reality the
|
||||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
// in any intermediate location.
|
||||
memcpy(state.logical_position, target, sizeof(state.logical_position));
|
||||
memcpy(state.position, target, sizeof(state.position));
|
||||
|
||||
return(state.status_code);
|
||||
}
|
||||
@ -255,10 +279,10 @@ void gc_get_status(double *position, uint8_t *status_code, int *inches_mode, uin
|
||||
int axis;
|
||||
if (state.inches_mode) {
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
position[axis] = state.logical_position[axis]*INCHES_PER_MM;
|
||||
position[axis] = state.position[axis]*INCHES_PER_MM;
|
||||
}
|
||||
} else {
|
||||
memcpy(position, state.logical_position, sizeof(position));
|
||||
memcpy(position, state.position, sizeof(position));
|
||||
}
|
||||
*status_code = state.status_code;
|
||||
*inches_mode = state.inches_mode;
|
||||
|
42
geometry.c
Normal file
42
geometry.c
Normal file
@ -0,0 +1,42 @@
|
||||
/*
|
||||
geometry.h - a place for geometry helpers
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
|
||||
// Find the angle from the positive y axis to the given point with respect to origo.
|
||||
double theta(double x, double y)
|
||||
{
|
||||
double theta = atan(x/fabs(y));
|
||||
if (y>0) {
|
||||
return(theta);
|
||||
} else {
|
||||
if (theta>0)
|
||||
{
|
||||
return(theta-M_PI);
|
||||
} else {
|
||||
return(-M_PI-theta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double hypot(double x, double y)
|
||||
{
|
||||
sqrt(x*x + y*y);
|
||||
}
|
30
geometry.h
Normal file
30
geometry.h
Normal file
@ -0,0 +1,30 @@
|
||||
/*
|
||||
geometry.h - a place for geometry helpers
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef geometry_h
|
||||
#define geometry_h
|
||||
|
||||
// Find the angle from the positive y axis to the given point with respect to origo.
|
||||
double theta(double x, double y);
|
||||
|
||||
// Find the distance from origo to point [x,y]
|
||||
double hypot(double x, double y);
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user