arc code complete with support for both R and IJK style blocks

This commit is contained in:
Simen Svale Skogsrud
2009-02-01 11:58:21 +01:00
parent e21064bd86
commit 9799955555
6 changed files with 161 additions and 213 deletions

111
gcode.c
View File

@ -241,25 +241,100 @@ uint8_t gc_execute_line(char *line) {
break;
case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC:
if (radius_mode) {
// To be implemented
} else { // ijk-mode
// calculate the theta (angle) of the current point
double theta_start = theta(-offset[state.plane_axis_0], -offset[state.plane_axis_1]);
// calculate the theta (angle) of the target point
double theta_end = theta(target[state.plane_axis_0] - offset[state.plane_axis_0] - state.position[state.plane_axis_0],
target[state.plane_axis_1] - offset[state.plane_axis_1] - state.position[state.plane_axis_1]);
// ensure that the difference is positive so that we have clockwise travel
if (theta_end < theta_start) { theta_end += 2*M_PI; }
double angular_travel = fabs(theta_end-theta_start);
// Invert angular motion if we want a counter clockwise arc
if (next_action == MOTION_MODE_CCW_ARC) {
angular_travel = angular_travel-2*M_PI;
}
// Find the radius
double radius = hypot(offset[state.plane_axis_0], offset[state.plane_axis_1]);
// Prepare the arc
mc_arc(theta_start, angular_travel, radius, state.plane_axis_0, state.plane_axis_1, state.feed_rate);
/*
We need to calculate the center of the circle that has the designated radius and passes
through both the current position and the target position. This method calculates the following
set of equations where [x,y] is the vector from current to target position, d == distance of
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
the center of the travel vector. This is the distance from the center of the travel vector
to the center of our circle. A perpendicular to the travel vector is scaled to the length of
h and added to the center of the travel vector to form the new point [i,j] which will be
the center of our circle.
d^2 == x^2 + y^2
h^2 == r^2 + (d/2)^2
i == x/2 - y/d*h
j == y/2 + x/d*h
O <- [i,j]
- |
r - |
- |
- | h
- |
[0,0] -> C -----------------+--------------- T <- [x,y]
| <------ d/2 ---->|
C - Current position
T - Target position
O - center of circle that pass through both C and T
d - distance from C to T
r - designated radius
h - distance from center of CT to O
Expanding the equations:
h = sqrt(4 r^2 + x^2 + y^2)/2
d = sqrt(x^2 + y^2)
i = x/2 - (h * y)/d
j = y/2 + (h * x)/d
Which can be written:
i = (x - (y * sqrt(4 * r^2 + x^2 + y^2))/sqrt(x^2 + y^2))/2
j = (y + (x * sqrt(4 * r^2 + x^2 + y^2))/sqrt(x^2 + y^2))/2
Which can be optimized to:
h_x2_div_d = sqrt(4 * r^2 + x^2 + y^2)/sqrt(x^2 + y^2)
i = (x - (y * h_x2_div_d))/2
j = (y + (x * h_x2_div_d))/2
*/
// Calculate the change in position along each selected axis
double x = target[state.plane_axis_0]-state.position[state.plane_axis_0];
double y = target[state.plane_axis_1]-state.position[state.plane_axis_1];
clear_vector(&offset);
double h_x2_div_d = sqrt(4*r*r + x*x + y*y)/hypot(x,y); // == h * 2 / d
// The anti-clockwise circle lies to the right of the target direction. When offset is positive,
// the left hand circle will be generated - when it is negative the right hand circle is generated.
if (state.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
offset[state.plane_axis_0] = (x-(y*h_x2_div_d))/2;
offset[state.plane_axis_1] = (y+(x*h_x2_div_d))/2;
}
/*
This segment sets up an clockwise or counterclockwise arc from the current position to the target position around
the center designated by the offset vector. All theta-values measured in radians of deviance from the positive
y-axis.
| <- theta == 0
* * *
* *
* *
* O ----T <- theta == theta_end (e.g. 90 degrees: theta == PI/2)
* /
C <- theta == theta_start (e.g. -145 degrees: theta == -PI*(3/4))
*/
// calculate the theta (angle) of the current point
double theta_start = theta(-offset[state.plane_axis_0], -offset[state.plane_axis_1]);
// calculate the theta (angle) of the target point
double theta_end = theta(target[state.plane_axis_0] - offset[state.plane_axis_0] - state.position[state.plane_axis_0],
target[state.plane_axis_1] - offset[state.plane_axis_1] - state.position[state.plane_axis_1]);
// ensure that the difference is positive so that we have clockwise travel
if (theta_end < theta_start) { theta_end += 2*M_PI; }
double angular_travel = theta_end-theta_start;
// Invert angular motion if the g-code wanted a counterclockwise arc
if (state.motion_mode == MOTION_MODE_CCW_ARC) {
angular_travel = angular_travel-2*M_PI;
}
// Find the radius
double radius = hypot(offset[state.plane_axis_0], offset[state.plane_axis_1]);
// Prepare the arc
mc_arc(theta_start, angular_travel, radius, state.plane_axis_0, state.plane_axis_1, state.feed_rate);
break;
}
}