motion control level support for arcs. No gcode yet
This commit is contained in:
parent
73a357e512
commit
8c18e2659d
235
motion_control.c
235
motion_control.c
@ -35,18 +35,18 @@
|
||||
#include "nuts_bolts.h"
|
||||
#include "stepper.h"
|
||||
|
||||
#define MODE_AT_REST 0
|
||||
#define MODE_LINEAR 1
|
||||
#define MODE_ARC 2
|
||||
#define MODE_DWELL 3
|
||||
#define MODE_HOME 4
|
||||
#define MC_MODE_AT_REST 0
|
||||
#define MC_MODE_LINEAR 1
|
||||
#define MC_MODE_ARC 2
|
||||
#define MC_MODE_DWELL 3
|
||||
#define MC_MODE_HOME 4
|
||||
|
||||
#define PHASE_HOME_RETURN 0
|
||||
#define PHASE_HOME_NUDGE 1
|
||||
|
||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000
|
||||
|
||||
// Parameters when mode is MODE_ARC
|
||||
// Parameters when mode is MC_MODE_ARC
|
||||
struct LinearMotionParameters {
|
||||
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
|
||||
uint16_t feed_rate;
|
||||
@ -58,13 +58,15 @@ struct LinearMotionParameters {
|
||||
|
||||
struct ArcMotionParameters {
|
||||
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
|
||||
uint32_t circle_x, circle_y, target_x, target_y; // current position and target position in the
|
||||
// local coordinate system of the circle where [0,0] is the
|
||||
// center of the circle.
|
||||
int32_t error, x2, y2; // error is always == (circle_x**2 + circle_y**2 - radius**2),
|
||||
uint32_t x, y, target_x, target_y; // current position and target position in the
|
||||
// local coordinate system of the arc where [0,0] is the
|
||||
// center of the arc.
|
||||
int target_direction_x, target_direction_y; // sign(target_x)*angular_direction precalculated for speed
|
||||
int32_t error, x2, y2; // error is always == (x**2 + y**2 - radius**2),
|
||||
// x2 is always 2*x, y2 is always 2*y
|
||||
uint8_t axis_x, axis_y; // maps the circle axes to stepper axes
|
||||
int32_t target[3]; // The target position in absolute steps
|
||||
uint8_t axis_x, axis_y; // maps the arc axes to stepper axes
|
||||
int32_t target[3]; // The target position in absolute steps
|
||||
int8_t plane_steppers[3]; // A vector with the steppers of axis_x and axis_y set to 1, the remaining 0
|
||||
};
|
||||
|
||||
/* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to
|
||||
@ -76,16 +78,16 @@ struct MotionControlState {
|
||||
int32_t position[3]; // The current position of the tool in absolute steps
|
||||
int32_t pace; // Microseconds between each update in the current mode
|
||||
union {
|
||||
struct LinearMotionParameters linear; // variables used in MODE_LINEAR
|
||||
struct ArcMotionParameters arc; // variables used in MODE_ARC
|
||||
uint32_t dwell_milliseconds; // variable used in MODE_DWELL
|
||||
struct LinearMotionParameters linear; // variables used in MC_MODE_LINEAR
|
||||
struct ArcMotionParameters arc; // variables used in MC_MODE_ARC
|
||||
uint32_t dwell_milliseconds; // variable used in MC_MODE_DWELL
|
||||
};
|
||||
};
|
||||
struct MotionControlState state;
|
||||
|
||||
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
|
||||
|
||||
void set_direction_bits(int8_t *direction);
|
||||
void set_stepper_directions(int8_t *direction);
|
||||
inline void step_steppers(uint8_t *enabled);
|
||||
inline void step_axis(uint8_t axis);
|
||||
|
||||
@ -97,15 +99,14 @@ void mc_init()
|
||||
|
||||
void mc_dwell(uint32_t milliseconds)
|
||||
{
|
||||
st_synchronize();
|
||||
state.mode = MODE_DWELL;
|
||||
state.mode = MC_MODE_DWELL;
|
||||
state.dwell_milliseconds = milliseconds;
|
||||
state.pace = 1000;
|
||||
}
|
||||
|
||||
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
||||
{
|
||||
state.mode = MODE_LINEAR;
|
||||
state.mode = MC_MODE_LINEAR;
|
||||
|
||||
state.linear.target[X_AXIS] = trunc(x*X_STEPS_PER_MM);
|
||||
state.linear.target[Y_AXIS] = trunc(y*Y_STEPS_PER_MM);
|
||||
@ -128,7 +129,7 @@ void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_
|
||||
}
|
||||
|
||||
// Set our direction pins
|
||||
set_direction_bits(state.linear.direction);
|
||||
set_stepper_directions(state.linear.direction);
|
||||
|
||||
// Calculate the microseconds we need to wait between each step to achieve the desired feed rate
|
||||
if (invert_feed_rate) {
|
||||
@ -170,60 +171,90 @@ void perform_linear_motion()
|
||||
step_steppers(step);
|
||||
|
||||
} else {
|
||||
state.mode = MODE_AT_REST;
|
||||
state.mode = MC_MODE_AT_REST;
|
||||
}
|
||||
}
|
||||
|
||||
void mc_arc(double theta, double angular_travel, double radius, uint32_t *target)
|
||||
{
|
||||
state.mode = MODE_ARC;
|
||||
// Calculate the initial position and target position in the local coordinate system of the circle
|
||||
state.arc.circle_x = round(sin(theta)*radius);
|
||||
state.arc.circle_y = round(cos(theta)*radius);
|
||||
state.arc.target_x = trunc(sin(theta+angular_travel)*(radius-0.5));
|
||||
state.arc.target_y = trunc(cos(theta+angular_travel)*(radius-0.5));
|
||||
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
// circle in millimeters. axis_1 and axis_2 selects the plane in tool space.
|
||||
void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2)
|
||||
{
|
||||
state.mode = MC_MODE_ARC;
|
||||
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
|
||||
state.arc.angular_direction = sign(angular_travel);
|
||||
// Calculate the initial position and target position in the local coordinate system of the arc
|
||||
state.arc.x = round(sin(theta)*radius*X_STEPS_PER_MM);
|
||||
state.arc.y = round(cos(theta)*radius*X_STEPS_PER_MM);
|
||||
state.arc.target_x = trunc(sin(theta+angular_travel)*(radius*X_STEPS_PER_MM-0.5));
|
||||
state.arc.target_y = trunc(cos(theta+angular_travel)*(radius*X_STEPS_PER_MM-0.5));
|
||||
// Precalculate these values to optimize target detection
|
||||
state.arc.target_direction_x = sign(state.arc.target_x)*state.arc.angular_direction;
|
||||
state.arc.target_direction_y = sign(state.arc.target_y)*state.arc.angular_direction;
|
||||
// The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error
|
||||
// <0 we are inside the circle, when it is >0 we are outside of the circle, and when it is 0 we
|
||||
// are exactly on top of the circle.
|
||||
state.arc.error = round(pow(state.arc.circle_x,2) + pow(state.arc.circle_y,2) - pow(radius,2));
|
||||
// <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we
|
||||
// are exactly on top of the arc.
|
||||
state.arc.error = round(pow(state.arc.x,2) + pow(state.arc.y,2) - pow(radius,2));
|
||||
// Because the error-value moves in steps of (+/-)2x+1 and (+/-)2y+1 we save a couple of multiplications
|
||||
// by keeping track of the doubles of the circle coordinates at all times.
|
||||
state.arc.x2 = 2*state.arc.circle_x;
|
||||
state.arc.y2 = 2*state.arc.circle_y;
|
||||
// by keeping track of the doubles of the arc coordinates at all times.
|
||||
state.arc.x2 = 2*state.arc.x;
|
||||
state.arc.y2 = 2*state.arc.y;
|
||||
|
||||
// Set up a vector with the steppers we are going to use tracing the plane of this arc
|
||||
clear_vector(state.arc.plane_steppers);
|
||||
state.arc.plane_steppers[axis_1] = 1;
|
||||
state.arc.plane_steppers[axis_2] = 1;
|
||||
// And map the local coordinate system of the arc onto the tool axes of the selected plane
|
||||
state.arc.axis_x = axis_1;
|
||||
state.arc.axis_y = axis_2;
|
||||
}
|
||||
|
||||
void step_arc_along_x(dx,dy)
|
||||
void step_arc_along_x(int8_t dx, int8_t dy)
|
||||
{
|
||||
uint32_t diagonal_error;
|
||||
state.arc.circle_x+=dx;
|
||||
state.arc.x+=dx;
|
||||
state.arc.error += 1+state.arc.x2*dx;
|
||||
state.arc.x2 += 2*dx;
|
||||
diagonal_error = state.arc.error + 1 + state.arc.y2*dy;
|
||||
if(abs(state.arc.error) < abs(diagonal_error)) {
|
||||
state.arc.circle_y += dy;
|
||||
state.arc.y += dy;
|
||||
state.arc.y2 += 2*dy;
|
||||
state.arc.error = diagonal_error;
|
||||
};
|
||||
step_steppers(state.arc.plane_steppers); // step diagonal
|
||||
} else {
|
||||
step_axis(state.arc.axis_x); // step straight
|
||||
}
|
||||
}
|
||||
|
||||
void step_arc_along_y(dx,dy)
|
||||
void step_arc_along_y(int8_t dx, int8_t dy)
|
||||
{
|
||||
uint32_t diagonal_error;
|
||||
state.arc.circle_y+=dy;
|
||||
state.arc.y+=dy;
|
||||
state.arc.error += 1+state.arc.y2*dy;
|
||||
state.arc.y2 += 2*dy;
|
||||
diagonal_error = state.arc.error + 1 + state.arc.x2*dx;
|
||||
if(abs(state.arc.error) < abs(diagonal_error)) {
|
||||
state.arc.circle_x += dx;
|
||||
state.arc.x += dx;
|
||||
state.arc.x2 += 2*dx;
|
||||
state.arc.error = diagonal_error;
|
||||
step_steppers(state.arc.plane_steppers); // step diagonal
|
||||
} else {
|
||||
step_axis(state.arc.axis_y); // step straight
|
||||
}
|
||||
}
|
||||
|
||||
// Map dx and dy which are local to the arc being generated and map them on to the
|
||||
// selected axes for the current arc.
|
||||
void map_local_arc_directions_to_stepper_directions(int8_t dx, int8_t dy)
|
||||
{
|
||||
int direction[3];
|
||||
direction[state.arc.axis_x] = dx;
|
||||
direction[state.arc.axis_y] = dy;
|
||||
set_stepper_directions(direction);
|
||||
}
|
||||
|
||||
/*
|
||||
Quandrants of the circle
|
||||
Quandrants of the arc
|
||||
\ 7|0 /
|
||||
\ | /
|
||||
6 \|/ 1 y+
|
||||
@ -232,6 +263,7 @@ void step_arc_along_y(dx,dy)
|
||||
/ | \
|
||||
x- / 4|3 \ x+ */
|
||||
|
||||
// Determine within which quadrant of the circle the provided coordinate falls
|
||||
int quadrant(uint32_t x,uint32_t y)
|
||||
{
|
||||
// determine if the coordinate is in the quadrants 0,3,4 or 7
|
||||
@ -252,55 +284,108 @@ int quadrant(uint32_t x,uint32_t y)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int arc_at_target()
|
||||
{
|
||||
return((state.arc.x * state.arc.target_direction_y >=
|
||||
state.arc.target_x * state.arc.target_direction_y) &&
|
||||
(state.arc.y * state.arc.target_direction_x <=
|
||||
state.arc.target_y * state.arc.target_direction_x));
|
||||
}
|
||||
|
||||
|
||||
// Will trace the configured arc until the target is reached
|
||||
void trace_arc()
|
||||
{
|
||||
int q = quadrant(state.arc.x, state.arc.y);
|
||||
while(!arc_at_target())
|
||||
{
|
||||
if (state.arc.angular_direction) {
|
||||
switch (q) {
|
||||
case 0:
|
||||
map_local_arc_directions_to_stepper_directions(1,-1);
|
||||
while((!arc_at_target()) && state.arc.x>state.arc.y) { step_arc_along_x(1,-1); }
|
||||
case 1:
|
||||
map_local_arc_directions_to_stepper_directions(1,-1);
|
||||
while((!arc_at_target()) && state.arc.y>0) { step_arc_along_y(1,-1); }
|
||||
case 2:
|
||||
map_local_arc_directions_to_stepper_directions(-1,-1);
|
||||
while((!arc_at_target()) && state.arc.y>-state.arc.x) { step_arc_along_y(-1,-1); }
|
||||
case 3:
|
||||
map_local_arc_directions_to_stepper_directions(-1,-1);
|
||||
while((!arc_at_target()) && state.arc.x>0) { step_arc_along_x(-1,-1); }
|
||||
case 4:
|
||||
map_local_arc_directions_to_stepper_directions(-1,1);
|
||||
while((!arc_at_target()) && state.arc.y<state.arc.x) { step_arc_along_x(-1,1); }
|
||||
case 5:
|
||||
map_local_arc_directions_to_stepper_directions(-1,1);
|
||||
while((!arc_at_target()) && state.arc.y<0) { step_arc_along_y(-1,1); }
|
||||
case 6:
|
||||
map_local_arc_directions_to_stepper_directions(1,-1);
|
||||
while((!arc_at_target()) && state.arc.y<-state.arc.x) { step_arc_along_y(1,1); }
|
||||
case 7:
|
||||
map_local_arc_directions_to_stepper_directions(1,1);
|
||||
while((!arc_at_target()) && state.arc.x<0) { step_arc_along_x(1,1); }
|
||||
}
|
||||
} else {
|
||||
switch (q) {
|
||||
case 7:
|
||||
map_local_arc_directions_to_stepper_directions(-1,-1);
|
||||
while((!arc_at_target()) && state.arc.y>-state.arc.x) { step_arc_along_x(-1,-1); }
|
||||
case 6:
|
||||
map_local_arc_directions_to_stepper_directions(-1,-1);
|
||||
while((!arc_at_target()) && state.arc.y>0) { step_arc_along_y(-1,-1); }
|
||||
case 5:
|
||||
map_local_arc_directions_to_stepper_directions(1,-1);
|
||||
while((!arc_at_target()) && state.arc.y>state.arc.x) { step_arc_along_y(1,-1); }
|
||||
case 4:
|
||||
map_local_arc_directions_to_stepper_directions(1,-1);
|
||||
while((!arc_at_target()) && state.arc.x<0) { step_arc_along_x(1,-1); }
|
||||
case 3:
|
||||
map_local_arc_directions_to_stepper_directions(1,1);
|
||||
while((!arc_at_target()) && state.arc.y<-state.arc.x) { step_arc_along_x(1,1); }
|
||||
case 2:
|
||||
map_local_arc_directions_to_stepper_directions(1,1);
|
||||
while((!arc_at_target()) && state.arc.y<0) { step_arc_along_y(1,1); }
|
||||
case 1:
|
||||
map_local_arc_directions_to_stepper_directions(-1,1);
|
||||
while((!arc_at_target()) && state.arc.y<state.arc.x) { step_arc_along_y(-1,1); }
|
||||
case 0:
|
||||
map_local_arc_directions_to_stepper_directions(-1,1);
|
||||
while((!arc_at_target()) && state.arc.x>0) { step_arc_along_x(-1,1); }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void perform_arc()
|
||||
{
|
||||
int q = quadrant(state.arc.circle_x, state.arc.circle_y);
|
||||
|
||||
if (state.arc.angular_direction) {
|
||||
switch (q) {
|
||||
case 0: while(state.arc.circle_x>state.arc.circle_y) { step_arc_along_x(1,-1); }
|
||||
case 1: while(state.arc.circle_y>0) { step_arc_along_y(1,-1); }
|
||||
case 2: while(state.arc.circle_y>-state.arc.circle_x) { step_arc_along_y(-1,-1); }
|
||||
case 3: while(state.arc.circle_x>0) { step_arc_along_x(-1,-1); }
|
||||
case 4: while(state.arc.circle_y<state.arc.circle_x) { step_arc_along_x(-1,1); }
|
||||
case 5: while(state.arc.circle_y<0) { step_arc_along_y(-1,1); }
|
||||
case 6: while(state.arc.circle_y<-state.arc.circle_x) { step_arc_along_y(1,1); }
|
||||
case 7: while(state.arc.circle_x<0) { step_arc_along_x(1,1); }
|
||||
}
|
||||
} else {
|
||||
switch (q) {
|
||||
case 7: while(state.arc.circle_y>-state.arc.circle_x) { step_arc_along_x(-1,-1); }
|
||||
case 6: while(state.arc.circle_y>0) { step_arc_along_y(-1,-1); }
|
||||
case 5: while(state.arc.circle_y>state.arc.circle_x) { step_arc_along_y(1,-1); }
|
||||
case 4: while(state.arc.circle_x<0) { step_arc_along_x(1,-1); }
|
||||
case 3: while(state.arc.circle_y<-state.arc.circle_x) { step_arc_along_x(1,1); }
|
||||
case 2: while(state.arc.circle_y<0) { step_arc_along_y(1,1); }
|
||||
case 1: while(state.arc.circle_y<state.arc.circle_x) { step_arc_along_y(-1,1); }
|
||||
case 0: while(state.arc.circle_x>0) { step_arc_along_x(-1,1); }
|
||||
}
|
||||
}
|
||||
trace_arc();
|
||||
state.mode = MC_MODE_AT_REST;
|
||||
}
|
||||
|
||||
void mc_go_home()
|
||||
{
|
||||
state.mode = MODE_HOME;
|
||||
state.mode = MC_MODE_HOME;
|
||||
}
|
||||
|
||||
void perform_go_home()
|
||||
{
|
||||
st_go_home();
|
||||
st_synchronize();
|
||||
clear_vector(state.position); // By definition this is location [0, 0, 0]
|
||||
state.mode = MODE_AT_REST;
|
||||
state.mode = MC_MODE_AT_REST;
|
||||
}
|
||||
|
||||
void mc_execute() {
|
||||
st_set_pace(state.pace);
|
||||
while(state.mode) {
|
||||
switch(state.mode) {
|
||||
case MODE_AT_REST: break;
|
||||
case MODE_DWELL: _delay_ms(state.dwell_milliseconds); state.mode = MODE_AT_REST; break;
|
||||
case MODE_LINEAR: perform_linear_motion();
|
||||
case MODE_HOME: perform_go_home();
|
||||
case MC_MODE_AT_REST: break;
|
||||
case MC_MODE_DWELL: st_synchronize(); _delay_ms(state.dwell_milliseconds); state.mode = MC_MODE_AT_REST; break;
|
||||
case MC_MODE_LINEAR: perform_linear_motion();
|
||||
case MC_MODE_ARC: perform_arc();
|
||||
case MC_MODE_HOME: perform_go_home();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -314,7 +399,7 @@ int mc_status()
|
||||
// Set the direction pins for the stepper motors according to the provided vector.
|
||||
// direction is an array of three 8 bit integers representing the direction of
|
||||
// each motor. The values should be -1 (reverse), 0 or 1 (forward).
|
||||
void set_direction_bits(int8_t *direction)
|
||||
void set_stepper_directions(int8_t *direction)
|
||||
{
|
||||
/* Sorry about this convoluted code! It uses the fact that bit 7 of each direction
|
||||
int is set when the direction == -1, but is 0 when direction is forward. This
|
||||
|
@ -32,6 +32,13 @@ void mc_init();
|
||||
// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement.
|
||||
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate);
|
||||
|
||||
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
// circle in millimeters. axis_1 and axis_2 selects the plane in tool space.
|
||||
// Known issue: This method pretends that all axes uses the same steps/mm as the X axis. Which might
|
||||
// not be the case ... (To be continued)
|
||||
void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2);
|
||||
|
||||
// Prepare linear motion relative to the current position.
|
||||
void mc_dwell(uint32_t milliseconds);
|
||||
|
||||
|
2
todo.txt
2
todo.txt
@ -1,6 +1,8 @@
|
||||
* Implement homing cycle in stepper.c
|
||||
* Implement limit switch support in stepper.c (use port-triggered interrupts?)
|
||||
* How to implement st_set_pace? Consider synchronizing when pace is changed
|
||||
* How on earth am I going to deal with arcs in setups that have different steps/mm on each axis? Must
|
||||
support elipses?! Oh no.
|
||||
* Eliminate need for circle_x and circle_y in step_arc_along…
|
||||
* Use timer interrupts to drive steppers
|
||||
* Tool table
|
||||
|
Loading…
Reference in New Issue
Block a user