rough accelleration stuff

This commit is contained in:
Simen Svale Skogsrud 2010-06-28 23:29:58 +02:00
parent 1088c402ad
commit 703d812b85
8 changed files with 131 additions and 21 deletions

62
acceleration.c Normal file
View File

@ -0,0 +1,62 @@
/*
acceleration.c - support methods for acceleration-related calcul
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
// Estimate the maximum speed at a given distance when you need to reach the given
// target_velocity with max_accelleration.
double estimate_max_speed(double max_accelleration, double target_velocity, double distance) {
return(sqrt(-2*max_accelleration*distance+target_velocity*target_velocity))
}
// At what distance must we start accellerating/braking to reach target_speed from current_speed given the
// specified constant accelleration.
double estimate_brake_distance(double current_speed, double target_speed, double acceleration) {
return((target_speed*target_speed-current_speed*current_speed)/(2*acceleration));
}
// Calculate feed rate in length-units/second for a single axis
double axis_feed_rate(double steps_per_stepping, uint32_t stepping_rate, double steps_per_unit) {
if (stepping_rate == 0) { return(0.0); }
return((TICKS_PER_MICROSECOND*1000000)*steps_per_stepping/(stepping_rate*steps_per_unit));
}
// The 'swerve' of a joint is equal to the maximum accelleration of any single
// single axis in the corner between the outgoing and the incoming line. Accelleration control
// will regulate speed to avoid excessive swerve.
double calculate_swerve(struct Line* outgoing, struct Line* incoming) {
double x_swerve = abs(
axis_feed_rate(
((double)incoming->steps_x)/incoming->maximum_steps, incoming->rate, settings.steps_per_mm[X_AXIS])
- axis_feed_rate(
((double)incoming->steps_x)/incoming->maximum_steps, outgoing-> rate, settings.steps_per_mm[X_AXIS]));
double y_swerve = abs(
axis_feed_rate(
((double)incoming->steps_y)/incoming->maximum_steps, incoming->rate, settings.steps_per_mm[Y_AXIS])
- axis_feed_rate(
((double)incoming->steps_y)/incoming->maximum_steps, outgoing-> rate, settings.steps_per_mm[Y_AXIS]));
double z_swerve = abs(
axis_feed_rate(
((double)incoming->steps_z)/incoming->maximum_steps, incoming->rate, settings.steps_per_mm[Z_AXIS])
- axis_feed_rate(
((double)incoming->steps_z)/incoming->maximum_steps, outgoing-> rate, settings.steps_per_mm[Z_AXIS]));
return max(x_swerve, max(y_swerve, z_swerve));
}

12
acceleration.h Normal file
View File

@ -0,0 +1,12 @@
#ifndef acceleration_h
#define acceleration_h
// Estimate the maximum speed at a given distance when you need to reach the given
// target_velocity with max_accelleration.
double estimate_max_speed(double max_accelleration, double target_velocity, double distance);
// At what distance must we start accellerating/braking to reach target_speed from current_speed given the
// specified constant accelleration.
double estimate_brake_distance(double current_speed, double target_speed, double acceleration);
#endif

View File

@ -33,6 +33,8 @@ void reset_settings() {
settings.pulse_microseconds = STEP_PULSE_MICROSECONDS;
settings.default_feed_rate = DEFAULT_FEEDRATE;
settings.default_seek_rate = RAPID_FEEDRATE;
settings.dead_feed_rate = DEFAULT_FEEDRATE/5;
settings.acceleration = DEFAULT_FEEDRATE/100;
settings.mm_per_arc_segment = MM_PER_ARC_SEGMENT;
settings.invert_mask = STEPPING_INVERT_MASK;
}
@ -44,8 +46,10 @@ void dump_settings() {
printPgmString(PSTR(" (steps/mm z)\r\n$3 = ")); printInteger(settings.pulse_microseconds);
printPgmString(PSTR(" (microseconds step pulse)\r\n$4 = ")); printFloat(settings.default_feed_rate);
printPgmString(PSTR(" (mm/sec default feed rate)\r\n$5 = ")); printFloat(settings.default_seek_rate);
printPgmString(PSTR(" (mm/sec default seek rate)\r\n$6 = ")); printFloat(settings.mm_per_arc_segment);
printPgmString(PSTR(" (mm/arc segment)\r\n$7 = ")); printInteger(settings.invert_mask);
printPgmString(PSTR(" (mm/sec default seek rate)\r\n$7 = ")); printFloat(settings.dead_feed_rate);
printPgmString(PSTR(" (mm/sec max start and stop feed rate)\r\n$8 = ")); printFloat(settings.mm_per_arc_segment);
printPgmString(PSTR(" (mm/sec^2 max acceleration)\r\n$9 = ")); printFloat(settings.acceleration);
printPgmString(PSTR(" (mm/arc segment)\r\n$10 = ")); printInteger(settings.invert_mask);
printPgmString(PSTR(" (step port invert mask. binary = ")); printIntegerInBase(settings.invert_mask, 2);
printPgmString(PSTR(")\r\n\r\n'$x=value' to set parameter or just '$' to dump current settings\r\n"));
}
@ -74,8 +78,10 @@ void store_setting(int parameter, double value) {
case 3: settings.pulse_microseconds = round(value); break;
case 4: settings.default_feed_rate = value; break;
case 5: settings.default_seek_rate = value; break;
case 6: settings.mm_per_arc_segment = value; break;
case 7: settings.invert_mask = trunc(value); break;
case 6: settings.dead_feed_rate = value; break;
case 8: settings.mm_per_arc_segment = value; break;
case 9: settings.acceleration = value; break;
case 10: settings.invert_mask = trunc(value); break;
default:
printPgmString(PSTR("Unknown parameter\r\n"));
return;

View File

@ -69,6 +69,7 @@ struct Settings {
double default_seek_rate;
uint8_t invert_mask;
double mm_per_arc_segment;
double accelleration;
};
struct Settings settings;

View File

@ -68,7 +68,7 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
square(steps[Y_AXIS]/settings.steps_per_mm[1]) +
square(steps[Z_AXIS]/settings.steps_per_mm[2]));
st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS],
lround((millimeters_of_travel/feed_rate)*1000000));
lround((millimeters_of_travel/feed_rate)*1000000), millimeters_of_travel);
}
memcpy(position, target, sizeof(target)); // position[] = target[]
}
@ -79,7 +79,7 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
// segment is configured in config.h by setting MM_PER_ARC_SEGMENT.
// segment is configured in settings.mm_per_arc_segment.
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
int axis_linear, double feed_rate, int invert_feed_rate)
{
@ -107,7 +107,8 @@ void mc_arc(double theta, double angular_travel, double radius, double linear_tr
theta += theta_per_segment;
target[axis_1] = center_x+sin(theta)*radius;
target[axis_2] = center_y+cos(theta)*radius;
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], feed_rate, invert_feed_rate);
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], feed_rate, invert_feed_rate,
settings.mm_per_arc_segment);
}
}

View File

@ -1,3 +1,3 @@
# socat -d -d READLINE /dev/tty.usbserial-A9007QcR,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1
socat -d -d READLINE /dev/tty.FireFly-A964-SPP-1,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1
socat -d -d READLINE /dev/tty.usbserial-A9007QcR,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1
#socat -d -d READLINE /dev/tty.FireFly-A964-SPP-1,clocal=1,nonblock=1,cread=1,cs8,ixon=1,ixoff=1

View File

@ -24,7 +24,9 @@ if ARGV.empty?
exit
end
SerialPort.open('/dev/tty.FireFly-A964-SPP-1', 115200) do |sp|
# SerialPort.open('/dev/tty.FireFly-A964-SPP-1', 115200) do |sp|
SerialPort.open('/dev/tty.usbserial-A9007QcR', 9600) do |sp|
sp.write("\r\n\r\n");
sleep 1
ARGV.each do |file|
@ -44,4 +46,6 @@ SerialPort.open('/dev/tty.FireFly-A964-SPP-1', 115200) do |sp|
end
end
end
puts "Done."
sleep 500
end

View File

@ -28,6 +28,7 @@
#include <stdlib.h>
#include <util/delay.h>
#include "nuts_bolts.h"
#include "acceleration.h"
#include <avr/interrupt.h>
#include "wiring_serial.h"
@ -43,25 +44,42 @@ struct Line {
uint32_t steps_x, steps_y, steps_z;
int32_t maximum_steps;
uint8_t direction_bits;
uint32_t rate;
double average_millimeters_per_step_event;
uin32_t ideal_rate; // in step-events/minute
uin32_t exit_rate;
uin32_t brake_point; // the point where braking starts measured in step-events from end point
uint32_t rate; // in cpu-ticks pr. step
};
struct Line line_buffer[LINE_BUFFER_SIZE]; // A buffer for step instructions
volatile int line_buffer_head = 0;
volatile int line_buffer_tail = 0;
volatile int moving = FALSE;
// Variables used by SIG_OUTPUT_COMPARE1A
uint8_t out_bits; // The next stepping-bits to be output
struct Line *current_line; // A pointer to the line currently being traced
volatile int32_t counter_x, counter_y, counter_z; // counter variables for the bresenham line tracer
volatile int32_t counter_x,
counter_y, counter_z; // counter variables for the bresenham line tracer
uint32_t iterations; // The number of iterations left to complete the current_line
volatile int busy; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
void config_step_timer(uint32_t microseconds);
void set_step_events_per_minute(uint32_t steps_per_minute);
uint32_t mm_per_minute_to_step_events_pr_minute(struct Line* line, double mm_per_minute) {
return(mm_per_minute/line->average_millimeters_per_step_event);
}
void update_accelleration_plan() {
// Store the current
int initial_buffer_tail = line_buffer_tail;
}
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
// steps. Microseconds specify how many microseconds the move should take to perform.
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds) {
// steps. Microseconds specify how many microseconds the move should take to perform. To aid accelleration
// calculation the caller must also provide the physical length of the line in millimeters.
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds, double millimeters) {
// Calculate the buffer head after we push this byte
int next_buffer_head = (line_buffer_head + 1) % LINE_BUFFER_SIZE;
// If the buffer is full: good! That means we are well ahead of the robot.
@ -75,12 +93,13 @@ void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t
line->maximum_steps = max(line->steps_x, max(line->steps_y, line->steps_z));
// Bail if this is a zero-length line
if (line->maximum_steps == 0) { return; };
line->rate = microseconds/line->maximum_steps;
line->rate = (TICKS_PER_MICROSECOND*microseconds)/line->maximum_steps;
uint8_t direction_bits = 0;
if (steps_x < 0) { direction_bits |= (1<<X_DIRECTION_BIT); }
if (steps_y < 0) { direction_bits |= (1<<Y_DIRECTION_BIT); }
if (steps_z < 0) { direction_bits |= (1<<Z_DIRECTION_BIT); }
line->direction_bits = direction_bits;
line->average_millimeters_per_step_event = millimeters/line->maximum_steps
// Move buffer head
line_buffer_head = next_buffer_head;
// enable stepper interrupt
@ -126,8 +145,10 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
counter_y = counter_x;
counter_z = counter_x;
iterations = current_line->maximum_steps;
moving = TRUE;
} else {
// disable this interrupt until there is something to handle
moving = FALSE;
TIMSK1 &= ~(1<<OCIE1A);
PORTD |= (1<<4);
}
@ -225,9 +246,8 @@ void st_flush()
}
// Configures the prescaler and ceiling of timer 1 to produce the given rate as accurately as possible.
void config_step_timer(uint32_t microseconds)
void config_step_timer(uint32_t ticks)
{
uint32_t ticks = microseconds*TICKS_PER_MICROSECOND;
uint16_t ceiling;
uint16_t prescaler;
if (ticks <= 0xffffL) {
@ -256,6 +276,10 @@ void config_step_timer(uint32_t microseconds)
OCR1A = ceiling;
}
void set_step_events_per_minute(uint32_t steps_per_minute) {
config_step_timer((TICKS_PER_MICROSECOND*1000000*60)/steps_per_minute);
}
void st_go_home()
{
// Todo: Perform the homing cycle