Merge pull request #188 from jgeisler0303/new_planner
New planner commits merge into dev branch.
This commit is contained in:
commit
67608a5014
275
planner.c
275
planner.c
@ -22,14 +22,19 @@
|
||||
|
||||
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
|
||||
|
||||
#include <avr/interrupt.h>
|
||||
#include <inttypes.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include "planner.h"
|
||||
#include "nuts_bolts.h"
|
||||
#include "stepper.h"
|
||||
#include "settings.h"
|
||||
#include "config.h"
|
||||
#include "protocol.h"
|
||||
#include "motion_control.h"
|
||||
|
||||
uint32_t planner_steps_counter;
|
||||
|
||||
#define SOME_LARGE_VALUE 1.0E+38 // Used by rapids and acceleration maximization calculations. Just needs
|
||||
// to be larger than any feasible (mm/min)^2 or mm/sec^2 value.
|
||||
@ -38,6 +43,7 @@ static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion ins
|
||||
static volatile uint8_t block_buffer_head; // Index of the next block to be pushed
|
||||
static volatile uint8_t block_buffer_tail; // Index of the block to process now
|
||||
static uint8_t next_buffer_head; // Index of the next buffer head
|
||||
static uint8_t planned_block_tail; // Index of the latest block that is optimally planned
|
||||
// static *block_t block_buffer_planned;
|
||||
|
||||
// Define planner variables
|
||||
@ -94,10 +100,10 @@ static uint8_t prev_block_index(uint8_t block_index)
|
||||
the new initial rate and n_steps until deceleration are computed, since the stepper algorithm
|
||||
already handles acceleration and cruising and just needs to know when to start decelerating.
|
||||
*/
|
||||
static void calculate_trapezoid_for_block(block_t *block, float entry_speed_sqr, float exit_speed_sqr)
|
||||
static uint8_t calculate_trapezoid_for_block(block_t *block, uint8_t idx, float entry_speed_sqr, float exit_speed_sqr)
|
||||
{
|
||||
// Compute new initial rate for stepper algorithm
|
||||
block->initial_rate = ceil(sqrt(entry_speed_sqr)*(RANADE_MULTIPLIER/(60*ISR_TICKS_PER_SECOND))); // (mult*mm/isr_tic)
|
||||
uint32_t initial_rate = ceil(sqrt(entry_speed_sqr)*(RANADE_MULTIPLIER/(60*ISR_TICKS_PER_SECOND))); // (mult*mm/isr_tic)
|
||||
|
||||
// TODO: Compute new nominal rate if a feedrate override occurs.
|
||||
// block->nominal_rate = ceil(feed_rate*(RANADE_MULTIPLIER/(60.0*ISR_TICKS_PER_SECOND))); // (mult*mm/isr_tic)
|
||||
@ -112,19 +118,36 @@ static void calculate_trapezoid_for_block(block_t *block, float entry_speed_sqr,
|
||||
|
||||
// Check if this is a pure acceleration block by a intersection distance less than zero. Also
|
||||
// prevents signed and unsigned integer conversion errors.
|
||||
if (intersect_distance <= 0) {
|
||||
block->decelerate_after = 0;
|
||||
} else {
|
||||
uint32_t decelerate_after= 0;
|
||||
if (intersect_distance > 0) {
|
||||
// Determine deceleration distance (in steps) from nominal speed to exit speed for a trapezoidal profile.
|
||||
// Value is never negative. Nominal speed is always greater than or equal to the exit speed.
|
||||
// Computes: steps_decelerate = steps/mm * ( (v_nominal^2 - v_exit^2)/(2*acceleration) )
|
||||
block->decelerate_after = ceil(steps_per_mm_div_2_acc * (block->nominal_speed_sqr - exit_speed_sqr));
|
||||
decelerate_after = ceil(steps_per_mm_div_2_acc * (block->nominal_speed_sqr - exit_speed_sqr));
|
||||
|
||||
// The lesser of the two triangle and trapezoid distances always defines the velocity profile.
|
||||
if (block->decelerate_after > intersect_distance) { block->decelerate_after = intersect_distance; }
|
||||
if (decelerate_after > intersect_distance) { decelerate_after = intersect_distance; }
|
||||
|
||||
// Finally, check if this is a pure deceleration block.
|
||||
if (block->decelerate_after > block->step_event_count) { block->decelerate_after = block->step_event_count; }
|
||||
if (decelerate_after > block->step_event_count) { decelerate_after = block->step_event_count; }
|
||||
}
|
||||
|
||||
// safe block adjustment
|
||||
cli();
|
||||
uint8_t block_buffer_tail_hold= block_buffer_tail; // store to avoid reading volatile twice
|
||||
uint8_t block_buffer_head_hold= block_buffer_head; // store to avoid reading volatile twice
|
||||
uint8_t idx_inside_queue;
|
||||
// is the current block inside the queue? if not: the stepper overtook us
|
||||
if(block_buffer_head_hold>=block_buffer_tail_hold) idx_inside_queue= idx>=block_buffer_tail_hold && idx<=block_buffer_head_hold;
|
||||
else idx_inside_queue= idx<=block_buffer_head_hold || idx>=block_buffer_tail_hold;
|
||||
if(idx_inside_queue && (idx!=block_buffer_tail_hold || idx==block_buffer_head_hold || !st_is_decelerating())) {
|
||||
block->decelerate_after= decelerate_after;
|
||||
block->initial_rate= initial_rate;
|
||||
sei();
|
||||
return(true);
|
||||
} else {
|
||||
sei();
|
||||
return(false); // this block is currently being processed by the stepper and it already finished accelerating or the stepper is already finished with this block: we can no longer change anything here
|
||||
}
|
||||
}
|
||||
|
||||
@ -183,162 +206,106 @@ static void calculate_trapezoid_for_block(block_t *block, float entry_speed_sqr,
|
||||
can execute faster than new blocks can be added, and the planner buffer will then starve and empty, leading
|
||||
to weird hiccup-like jerky motions.
|
||||
*/
|
||||
static void planner_recalculate()
|
||||
static uint8_t planner_recalculate()
|
||||
{
|
||||
|
||||
// float entry_speed_sqr;
|
||||
// uint8_t block_index = block_buffer_head;
|
||||
// block_t *previous = NULL;
|
||||
// block_t *current = NULL;
|
||||
// block_t *next;
|
||||
// while (block_index != block_buffer_tail) {
|
||||
// block_index = prev_block_index( block_index );
|
||||
// next = current;
|
||||
// current = previous;
|
||||
// previous = &block_buffer[block_index];
|
||||
//
|
||||
// if (next && current) {
|
||||
// if (next != block_buffer_planned) {
|
||||
// if (previous == block_buffer_tail) { block_buffer_planned = next; }
|
||||
// else {
|
||||
//
|
||||
// if (current->entry_speed_sqr != current->max_entry_speed_sqr) {
|
||||
// current->recalculate_flag = true; // Almost always changes. So force recalculate.
|
||||
// entry_speed_sqr = next->entry_speed_sqr + 2*current->acceleration*current->millimeters;
|
||||
// if (entry_speed_sqr < current->max_entry_speed_sqr) {
|
||||
// current->entry_speed_sqr = entry_speed_sqr;
|
||||
// } else {
|
||||
// current->entry_speed_sqr = current->max_entry_speed_sqr;
|
||||
// }
|
||||
// } else {
|
||||
// block_buffer_planned = current;
|
||||
// }
|
||||
// }
|
||||
// } else {
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// block_index = block_buffer_planned;
|
||||
// next = &block_buffer[block_index];
|
||||
// current = prev_block_index(block_index);
|
||||
// while (block_index != block_buffer_head) {
|
||||
//
|
||||
// // If the current block is an acceleration block, but it is not long enough to complete the
|
||||
// // full speed change within the block, we need to adjust the exit speed accordingly. Entry
|
||||
// // speeds have already been reset, maximized, and reverse planned by reverse planner.
|
||||
// if (current->entry_speed_sqr < next->entry_speed_sqr) {
|
||||
// // Compute block exit speed based on the current block speed and distance
|
||||
// // Computes: v_exit^2 = v_entry^2 + 2*acceleration*distance
|
||||
// entry_speed_sqr = current->entry_speed_sqr + 2*current->acceleration*current->millimeters;
|
||||
//
|
||||
// // If it's less than the stored value, update the exit speed and set recalculate flag.
|
||||
// if (entry_speed_sqr < next->entry_speed_sqr) {
|
||||
// next->entry_speed_sqr = entry_speed_sqr;
|
||||
// next->recalculate_flag = true;
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Recalculate if current block entry or exit junction speed has changed.
|
||||
// if (current->recalculate_flag || next->recalculate_flag) {
|
||||
// // NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
||||
// calculate_trapezoid_for_block(current, current->entry_speed_sqr, next->entry_speed_sqr);
|
||||
// current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
|
||||
// }
|
||||
//
|
||||
// current = next;
|
||||
// next = &block_buffer[block_index];
|
||||
// block_index = next_block_index( block_index );
|
||||
// }
|
||||
//
|
||||
// // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
||||
// calculate_trapezoid_for_block(next, next->entry_speed_sqr, MINIMUM_PLANNER_SPEED*MINIMUM_PLANNER_SPEED);
|
||||
// next->recalculate_flag = false;
|
||||
uint8_t current_block_idx= block_buffer_head;
|
||||
block_t *curr_block = &block_buffer[current_block_idx];
|
||||
uint8_t plan_unchanged= 1;
|
||||
|
||||
// TODO: No over-write protection exists for the executing block. For most cases this has proven to be ok, but
|
||||
// for feed-rate overrides, something like this is essential. Place a request here to the stepper driver to
|
||||
// find out where in the planner buffer is the a safe place to begin re-planning from.
|
||||
planner_steps_counter= 0;
|
||||
if(current_block_idx!=block_buffer_tail) { // we cannot do anything to only one block
|
||||
float max_entry_speed_sqr;
|
||||
float next_entry_speed_sqr= 0.0;
|
||||
// loop backwards to possibly postpone deceleration
|
||||
while(current_block_idx!=planned_block_tail) { // the second block is the one where we start the forward loop
|
||||
if(current_block_idx==block_buffer_tail) {
|
||||
planned_block_tail= current_block_idx;
|
||||
break;
|
||||
}
|
||||
planner_steps_counter++;
|
||||
|
||||
// if (block_buffer_head != block_buffer_tail) {
|
||||
float entry_speed_sqr;
|
||||
// TODO: Determine maximum entry speed at junction for feedrate overrides, since they can alter
|
||||
// the planner nominal speeds at any time. This calc could be done in the override handler, but
|
||||
// this could require an additional variable to be stored to differentiate the programmed nominal
|
||||
// speeds, max junction speed, and override speeds/scalar.
|
||||
|
||||
// Perform reverse planner pass. Skip the head(end) block since it is already initialized, and skip the
|
||||
// tail(first) block to prevent over-writing of the initial entry speed.
|
||||
uint8_t block_index = prev_block_index( block_buffer_head ); // Assume buffer is not empty.
|
||||
block_t *current = &block_buffer[block_index]; // Head block-1 = Newly appended block
|
||||
block_t *next;
|
||||
if (block_index != block_buffer_tail) { block_index = prev_block_index( block_index ); }
|
||||
while (block_index != block_buffer_tail) {
|
||||
next = current;
|
||||
current = &block_buffer[block_index];
|
||||
|
||||
// TODO: Determine maximum entry speed at junction for feedrate overrides, since they can alter
|
||||
// the planner nominal speeds at any time. This calc could be done in the override handler, but
|
||||
// this could require an additional variable to be stored to differentiate the programmed nominal
|
||||
// speeds, max junction speed, and override speeds/scalar.
|
||||
|
||||
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
||||
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
|
||||
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
|
||||
if (current->entry_speed_sqr != current->max_entry_speed_sqr) {
|
||||
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
||||
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
|
||||
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
|
||||
if (curr_block->entry_speed_sqr != curr_block->max_entry_speed_sqr) {
|
||||
// default if next_entry_speed_sqr > curr_block->max_entry_speed_sqr || max_entry_speed_sqr > curr_block->max_entry_speed_sqr
|
||||
curr_block->entry_speed_sqr = curr_block->max_entry_speed_sqr;
|
||||
|
||||
current->entry_speed_sqr = current->max_entry_speed_sqr;
|
||||
current->recalculate_flag = true; // Almost always changes. So force recalculate.
|
||||
|
||||
if (next->entry_speed_sqr < current->max_entry_speed_sqr) {
|
||||
// Computes: v_entry^2 = v_exit^2 + 2*acceleration*distance
|
||||
entry_speed_sqr = next->entry_speed_sqr + 2*current->acceleration*current->millimeters;
|
||||
if (entry_speed_sqr < current->max_entry_speed_sqr) {
|
||||
current->entry_speed_sqr = entry_speed_sqr;
|
||||
if (next_entry_speed_sqr < curr_block->max_entry_speed_sqr) {
|
||||
// Computes: v_entry^2 = v_exit^2 + 2*acceleration*distance
|
||||
max_entry_speed_sqr = next_entry_speed_sqr + 2*curr_block->acceleration*curr_block->millimeters;
|
||||
if (max_entry_speed_sqr < curr_block->max_entry_speed_sqr) {
|
||||
curr_block->entry_speed_sqr = max_entry_speed_sqr;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
block_index = prev_block_index( block_index );
|
||||
}
|
||||
}
|
||||
next_entry_speed_sqr= curr_block->entry_speed_sqr;
|
||||
|
||||
// Perform forward planner pass. Begins junction speed adjustments after tail(first) block.
|
||||
// Also recalculate trapezoids, block by block, as the forward pass completes the plan.
|
||||
block_index = next_block_index(block_buffer_tail);
|
||||
next = &block_buffer[block_buffer_tail]; // Places tail(first) block into current
|
||||
while (block_index != block_buffer_head) {
|
||||
current = next;
|
||||
next = &block_buffer[block_index];
|
||||
current_block_idx= prev_block_index( current_block_idx );
|
||||
curr_block= &block_buffer[current_block_idx];
|
||||
}
|
||||
|
||||
// loop forward, adjust exit speed to not exceed max accelleration
|
||||
block_t *next_block;
|
||||
uint8_t next_block_idx;
|
||||
float max_exit_speed_sqr;
|
||||
while(current_block_idx!=block_buffer_head) {
|
||||
next_block_idx= next_block_index(current_block_idx);
|
||||
next_block = &block_buffer[next_block_idx];
|
||||
|
||||
// If the current block is an acceleration block, but it is not long enough to complete the
|
||||
// full speed change within the block, we need to adjust the exit speed accordingly. Entry
|
||||
// speeds have already been reset, maximized, and reverse planned by reverse planner.
|
||||
if (current->entry_speed_sqr < next->entry_speed_sqr) {
|
||||
if (curr_block->entry_speed_sqr < next_block->entry_speed_sqr) {
|
||||
// Compute block exit speed based on the current block speed and distance
|
||||
// Computes: v_exit^2 = v_entry^2 + 2*acceleration*distance
|
||||
entry_speed_sqr = current->entry_speed_sqr + 2*current->acceleration*current->millimeters;
|
||||
max_exit_speed_sqr = curr_block->entry_speed_sqr + 2*curr_block->acceleration*curr_block->millimeters;
|
||||
|
||||
// If it's less than the stored value, update the exit speed and set recalculate flag.
|
||||
if (entry_speed_sqr < next->entry_speed_sqr) {
|
||||
next->entry_speed_sqr = entry_speed_sqr;
|
||||
next->recalculate_flag = true;
|
||||
}
|
||||
} else {
|
||||
max_exit_speed_sqr= SOME_LARGE_VALUE;
|
||||
}
|
||||
|
||||
// Recalculate if current block entry or exit junction speed has changed.
|
||||
if (current->recalculate_flag || next->recalculate_flag) {
|
||||
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
||||
calculate_trapezoid_for_block(current, current->entry_speed_sqr, next->entry_speed_sqr);
|
||||
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
|
||||
// adjust max_exit_speed_sqr in case this is a deceleration block or max accel cannot be reached
|
||||
if(max_exit_speed_sqr>next_block->entry_speed_sqr) {
|
||||
max_exit_speed_sqr= next_block->entry_speed_sqr;
|
||||
} else {
|
||||
// this block has reached max acceleration, it is optimal
|
||||
planned_block_tail= next_block_idx;
|
||||
}
|
||||
|
||||
block_index = next_block_index( block_index );
|
||||
if(calculate_trapezoid_for_block(curr_block, current_block_idx, curr_block->entry_speed_sqr, max_exit_speed_sqr)) {
|
||||
next_block->entry_speed_sqr= max_exit_speed_sqr;
|
||||
plan_unchanged= 0;
|
||||
} else if(!plan_unchanged) { // we started to modify the plan an then got overtaken by the stepper executing the plan: this is bad
|
||||
return(0);
|
||||
}
|
||||
|
||||
// Check if the next block entry speed is at max_entry_speed. If so, move the planned pointer, since
|
||||
// this entry speed cannot be improved anymore and all prior blocks have been completed and optimally planned.
|
||||
if(next_block->entry_speed_sqr>=next_block->max_entry_speed_sqr) {
|
||||
planned_block_tail= next_block_idx;
|
||||
}
|
||||
|
||||
current_block_idx= next_block_idx;
|
||||
curr_block= next_block;
|
||||
}
|
||||
}
|
||||
|
||||
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
||||
calculate_trapezoid_for_block(next, next->entry_speed_sqr, MINIMUM_PLANNER_SPEED*MINIMUM_PLANNER_SPEED);
|
||||
next->recalculate_flag = false;
|
||||
// }
|
||||
if(!calculate_trapezoid_for_block(curr_block, current_block_idx, curr_block->entry_speed_sqr, MINIMUM_PLANNER_SPEED*MINIMUM_PLANNER_SPEED)) {
|
||||
// this can only happen to the first block in the queue? so we dont need to clear or stop anything
|
||||
return(0);
|
||||
} else
|
||||
return(1);
|
||||
}
|
||||
|
||||
void plan_init()
|
||||
{
|
||||
block_buffer_tail = block_buffer_head;
|
||||
block_buffer_tail = block_buffer_head= planned_block_tail;
|
||||
next_buffer_head = next_block_index(block_buffer_head);
|
||||
// block_buffer_planned = block_buffer_head;
|
||||
memset(&pl, 0, sizeof(pl)); // Clear planner struct
|
||||
@ -409,7 +376,7 @@ void plan_buffer_line(float x, float y, float z, float feed_rate, uint8_t invert
|
||||
|
||||
// Compute path vector in terms of absolute step target and current positions
|
||||
float delta_mm[N_AXIS];
|
||||
delta_mm[X_AXIS] = x-pl.last_x;
|
||||
delta_mm[X_AXIS] = x-pl.last_x; // what difference would it make to use block->steps_x/settings.steps_per_mm[X_AXIS]; instead?
|
||||
delta_mm[Y_AXIS] = y-pl.last_y;
|
||||
delta_mm[Z_AXIS] = z-pl.last_z;
|
||||
block->millimeters = sqrt(delta_mm[X_AXIS]*delta_mm[X_AXIS] + delta_mm[Y_AXIS]*delta_mm[Y_AXIS] +
|
||||
@ -448,13 +415,14 @@ void plan_buffer_line(float x, float y, float z, float feed_rate, uint8_t invert
|
||||
block->nominal_rate = ceil(feed_rate*(RANADE_MULTIPLIER/(60.0*ISR_TICKS_PER_SECOND))); // (mult*mm/isr_tic)
|
||||
|
||||
// Compute the acceleration and distance traveled per step event for the stepper algorithm.
|
||||
// TODO: obsolete?
|
||||
block->rate_delta = ceil(block->acceleration*
|
||||
((RANADE_MULTIPLIER/(60.0*60.0))/(ISR_TICKS_PER_SECOND*ACCELERATION_TICKS_PER_SECOND))); // (mult*mm/isr_tic/accel_tic)
|
||||
block->d_next = ceil((block->millimeters*RANADE_MULTIPLIER)/block->step_event_count); // (mult*mm/step)
|
||||
|
||||
// Compute direction bits. Bit enabled always means direction is negative.
|
||||
block->direction_bits = 0;
|
||||
if (unit_vec[X_AXIS] < 0) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
|
||||
if (unit_vec[X_AXIS] < 0) { block->direction_bits |= (1<<X_DIRECTION_BIT); } // maybe more efficient to be calculated together with block->steps_x
|
||||
if (unit_vec[Y_AXIS] < 0) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
|
||||
if (unit_vec[Z_AXIS] < 0) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
|
||||
|
||||
@ -474,8 +442,8 @@ void plan_buffer_line(float x, float y, float z, float feed_rate, uint8_t invert
|
||||
// just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform
|
||||
// a continuous mode path, but ARM-based microcontrollers most certainly do.
|
||||
|
||||
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
||||
block->max_entry_speed_sqr = MINIMUM_PLANNER_SPEED*MINIMUM_PLANNER_SPEED;
|
||||
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
||||
if ((block_buffer_head != block_buffer_tail) && (pl.previous_nominal_speed_sqr > 0.0)) {
|
||||
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
||||
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
||||
@ -496,13 +464,11 @@ void plan_buffer_line(float x, float y, float z, float feed_rate, uint8_t invert
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize block entry speed. Compute block entry velocity backwards from user-defined MINIMUM_PLANNER_SPEED.
|
||||
// TODO: This could be moved to the planner recalculate function.
|
||||
block->entry_speed_sqr = min( block->max_entry_speed_sqr,
|
||||
MINIMUM_PLANNER_SPEED*MINIMUM_PLANNER_SPEED + 2*block->acceleration*block->millimeters);
|
||||
// Initialize block entry speed
|
||||
block->entry_speed_sqr = MINIMUM_PLANNER_SPEED*MINIMUM_PLANNER_SPEED;
|
||||
|
||||
// Set new block to be recalculated for conversion to stepper data.
|
||||
block->recalculate_flag = true;
|
||||
block->recalculate_flag = true; // TODO: obsolete?
|
||||
|
||||
// Update previous path unit_vector and nominal speed (squared)
|
||||
memcpy(pl.previous_unit_vec, unit_vec, sizeof(unit_vec)); // pl.previous_unit_vec[] = unit_vec[]
|
||||
@ -514,11 +480,20 @@ void plan_buffer_line(float x, float y, float z, float feed_rate, uint8_t invert
|
||||
pl.last_y = y;
|
||||
pl.last_z = z;
|
||||
|
||||
if(!planner_recalculate()) {
|
||||
// TODO: make alarm informative
|
||||
if (sys.state != STATE_ALARM) {
|
||||
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
|
||||
mc_reset(); // Initiate system kill.
|
||||
sys.execute |= EXEC_CRIT_EVENT; // Indicate hard limit critical event
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Update buffer head and next buffer head indices
|
||||
// Mind that updating block_buffer_head after the planner changes the planner logic a bit
|
||||
block_buffer_head = next_buffer_head;
|
||||
next_buffer_head = next_block_index(block_buffer_head);
|
||||
|
||||
planner_recalculate();
|
||||
}
|
||||
|
||||
// Reset the planner position vectors. Called by the system abort/initialization routine.
|
||||
|
@ -22,6 +22,8 @@
|
||||
#ifndef planner_h
|
||||
#define planner_h
|
||||
|
||||
extern uint32_t planner_steps_counter;
|
||||
|
||||
// The number of linear motions that can be in the plan at any give time
|
||||
#ifndef BLOCK_BUFFER_SIZE
|
||||
#define BLOCK_BUFFER_SIZE 18
|
||||
|
@ -40,3 +40,4 @@ uint16_t pcmsk0;
|
||||
uint16_t pcicr;
|
||||
|
||||
void sei() {};
|
||||
void cli() {};
|
@ -49,6 +49,7 @@ extern uint16_t pcicr;
|
||||
|
||||
// enable interrupts does nothing in the simulation environment
|
||||
void sei();
|
||||
void cli();
|
||||
|
||||
// dummy macros for interrupt related registers
|
||||
#define TIMSK0 timsk0
|
||||
|
@ -157,7 +157,8 @@ void printBlock() {
|
||||
else block_position[2]+= b->steps_z;
|
||||
fprintf(block_out_file,"%d, ", block_position[2]);
|
||||
|
||||
fprintf(block_out_file,"%f", b->entry_speed_sqr);
|
||||
fprintf(block_out_file,"%f, ", b->entry_speed_sqr);
|
||||
fprintf(block_out_file,"%d", planner_steps_counter);
|
||||
fprintf(block_out_file,"\n");
|
||||
|
||||
last_block= b;
|
||||
|
@ -62,6 +62,7 @@ static uint8_t out_bits; // The next stepping-bits to be output
|
||||
// this blocking variable is no longer needed. Only here for safety reasons.
|
||||
static volatile uint8_t busy; // True when "Stepper Driver Interrupt" is being serviced. Used to avoid retriggering that handler.
|
||||
|
||||
|
||||
// __________________________
|
||||
// /| |\ _________________ ^
|
||||
// / | | \ /| |\ |
|
||||
@ -380,3 +381,8 @@ void st_cycle_reinitialize()
|
||||
sys.state = STATE_IDLE;
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t st_is_decelerating() {
|
||||
return st.ramp_type == DECEL_RAMP;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user