minor edits after verifying refactored grbl on real hardware

This commit is contained in:
Simen Svale Skogsrud 2010-03-04 21:18:55 +01:00
parent b9c3ea02fb
commit 58ad1ba509
7 changed files with 24 additions and 26 deletions

View File

@ -23,9 +23,10 @@
#define VERSION "0.5" #define VERSION "0.5"
#define X_STEPS_PER_MM (94.488188976378*16) #define MICROSTEPS 8
#define Y_STEPS_PER_MM (94.488188976378*16) #define X_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define Z_STEPS_PER_MM (94.488188976378*16) #define Y_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define Z_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define STEP_PULSE_MICROSECONDS 30 #define STEP_PULSE_MICROSECONDS 30
@ -80,6 +81,6 @@
// Uncomment this line to invert all step- and direction bits // Uncomment this line to invert all step- and direction bits
// #define STEPPING_INVERT_MASK (STEPPING_MASK) // #define STEPPING_INVERT_MASK (STEPPING_MASK)
// Or bake your own like this adding any step-bits or directions you want to invert: // Or bake your own like this adding any step-bits or directions you want to invert:
// #define STEPPING_INVERT_MASK (STEP_MASK | (1<<Z_DIRECTION_BIT)) // #define STEPPING_INVERT_MASK (STEP_MASK | (1<<X_DIRECTION_BIT) | (1<<Y_DIRECTION_BIT))
#endif #endif

View File

@ -5,7 +5,7 @@ G0X0.000Y0.000S8000M3
G0X0.000Y-33.519Z6.000 G0X0.000Y-33.519Z6.000
G1Z-1.000 G1Z-1.000
G1X0.327Y-33.521 G1X0.327Y-33.521
F120.0 F800.0
X0.654Y-33.526 X0.654Y-33.526
X0.980Y-33.534 X0.980Y-33.534
X1.304Y-33.546 X1.304Y-33.546

1
main.c
View File

@ -38,6 +38,7 @@ int main(void)
spindle_init(); // initialize spindle controller spindle_init(); // initialize spindle controller
gc_init(); // initialize gcode-parser gc_init(); // initialize gcode-parser
sp_init(); // initialize the serial protocol sp_init(); // initialize the serial protocol
// sd_raw_init());
DDRD |= (1<<3)|(1<<4)|(1<<5); DDRD |= (1<<3)|(1<<4)|(1<<5);

View File

@ -73,7 +73,6 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
memcpy(position, target, sizeof(target)); // position[] = target[] memcpy(position, target, sizeof(target)); // position[] = target[]
} }
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc, // Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining // circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining

View File

@ -1,2 +1,2 @@
#!/opt/local/bin/ruby #!/opt/local/bin/ruby
require 'stream' require 'script/stream'

View File

@ -46,11 +46,11 @@ volatile int line_buffer_head = 0;
volatile int line_buffer_tail = 0; volatile int line_buffer_tail = 0;
// Variables used by SIG_OUTPUT_COMPARE1A // Variables used by SIG_OUTPUT_COMPARE1A
uint8_t out_bits; uint8_t out_bits; // The next stepping-bits to be output
struct Line *current_line; struct Line *current_line; // A pointer to the line currently being traced
volatile int32_t counter_x, counter_y, counter_z; volatile int32_t counter_x, counter_y, counter_z; // counter variables for the bresenham line tracer
uint32_t iterations; uint32_t iterations; // The number of iterations left to complete the current_line
volatile busy; volatile busy; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
void config_step_timer(uint32_t microseconds); void config_step_timer(uint32_t microseconds);
@ -62,8 +62,7 @@ void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t
// If the buffer is full: good! That means we are well ahead of the robot. // If the buffer is full: good! That means we are well ahead of the robot.
// Nap until there is room in the buffer. // Nap until there is room in the buffer.
while(line_buffer_tail == next_buffer_head) { sleep_mode(); } while(line_buffer_tail == next_buffer_head) { sleep_mode(); }
// Setup line record
// setup line
struct Line *line = &line_buffer[line_buffer_head]; struct Line *line = &line_buffer[line_buffer_head];
line->steps_x = labs(steps_x); line->steps_x = labs(steps_x);
line->steps_y = labs(steps_y); line->steps_y = labs(steps_y);
@ -83,28 +82,26 @@ void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t
TIMSK1 |= (1<<OCIE1A); TIMSK1 |= (1<<OCIE1A);
} }
// This timer interrupt is executed at the pace set with st_buffer_pace. It pops one instruction from // This timer interrupt is executed at the rate set with config_step_timer. It pops one instruction from
// the line_buffer, executes it. Then it starts timer2 in order to reset the motor port after // the line_buffer, executes it. Then it starts timer2 in order to reset the motor port after
// five microseconds. // five microseconds.
SIGNAL(SIG_OUTPUT_COMPARE1A) SIGNAL(SIG_OUTPUT_COMPARE1A)
{ {
if(busy){ return; } // The busy-flag is used to avoid retriggering this interrupt. if(busy){ return; } // The busy-flag is used to avoid reentering this interrupt
PORTD |= (1<<3); PORTD |= (1<<3);
// Set the direction pins a cuple of nanoseconds before we step the steppers // Set the direction pins a cuple of nanoseconds before we step the steppers
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK); STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK);
// Then pulse the stepping pins // Then pulse the stepping pins
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | out_bits; STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | out_bits;
// Reset step pulse reset timer // Reset step pulse reset timer so that SIG_OVERFLOW2 can reset the signal after
// exactly STEP_PULSE_MICROSECONDS microseconds.
TCNT2 = -(((STEP_PULSE_MICROSECONDS-2)*TICKS_PER_MICROSECOND)/8); TCNT2 = -(((STEP_PULSE_MICROSECONDS-2)*TICKS_PER_MICROSECOND)/8);
busy = TRUE; busy = TRUE;
sei(); sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
// We re-enable interrupts in order for SIG_OVERFLOW2 to be able to be triggered // We re-enable interrupts in order for SIG_OVERFLOW2 to be able to be triggered
// and reset the stepper signal even before this handler is done. Needed // at exactly the right time even if we occasionally spend a lot of time inside this handler.
// to generate a clean stepper-signal in the event that this is going to be a time consuming
// time around in this interrupt e.g. if we just completed a line and need to
// set up another.
// If there is no current line, attempt to pop one from the buffer // If there is no current line, attempt to pop one from the buffer
if (current_line == NULL) { if (current_line == NULL) {
@ -115,7 +112,7 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
// Retrieve a new line and get ready to step it // Retrieve a new line and get ready to step it
current_line = &line_buffer[line_buffer_tail]; current_line = &line_buffer[line_buffer_tail];
config_step_timer(current_line->rate); config_step_timer(current_line->rate);
counter_x = -(current_line->maximum_steps/2); counter_x = -(current_line->maximum_steps >> 1);
counter_y = counter_x; counter_y = counter_x;
counter_z = counter_x; counter_z = counter_x;
iterations = current_line->maximum_steps; iterations = current_line->maximum_steps;
@ -213,7 +210,7 @@ void st_flush()
sei(); sei();
} }
// Configures the prescaler and ceiling of timer 1 to produce the given pace as accurately as possible. // Configures the prescaler and ceiling of timer 1 to produce the given rate as accurately as possible.
void config_step_timer(uint32_t microseconds) void config_step_timer(uint32_t microseconds)
{ {
uint32_t ticks = microseconds*TICKS_PER_MICROSECOND; uint32_t ticks = microseconds*TICKS_PER_MICROSECOND;