added segmented arc support with configurable segmentation

This commit is contained in:
Simen Svale Skogsrud 2010-03-03 01:39:44 +01:00
parent df243d2490
commit 49ca861dc0
5 changed files with 28 additions and 3 deletions

View File

@ -50,7 +50,6 @@
#define Y_DIRECTION_BIT 4
#define Z_DIRECTION_BIT 5
#define LIMIT_DDR DDRD
#define LIMIT_PORT PORTD
#define X_LIMIT_BIT 3
@ -65,6 +64,8 @@
#define SPINDLE_DIRECTION_PORT PORTD
#define SPINDLE_DIRECTION_BIT 7
#define MM_PER_ARC_SEGMENT 0.1
#define BAUD_RATE 9600
#define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT))

View File

@ -373,6 +373,9 @@ uint8_t gc_execute_line(char *line) {
// Trace the arc
mc_arc(theta_start, angular_travel, radius, depth, gc.plane_axis_0, gc.plane_axis_1, gc.plane_axis_2,
(gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.feed_rate, gc.inverse_feed_rate_mode);
// Finish off with a line to make sure we arrive exactly where we think we are
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
(gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.feed_rate, gc.inverse_feed_rate_mode);
break;
}
}

View File

@ -105,7 +105,25 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
int axis_linear, double feed_rate, int invert_feed_rate)
{
{
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
if (millimeters_of_travel == 0.0) { return; }
uint16_t segments = ceil(millimeters_of_travel/MM_PER_ARC_SEGMENT);
if (invert_feed_rate) { feed_rate *= segments; }
double theta_per_segment = angular_travel/segments;
double linear_per_segment = linear_travel/segments;
double center_x = (position[axis_1]/X_STEPS_PER_MM)-sin(theta)*radius;
double center_y = (position[axis_2]/Y_STEPS_PER_MM)-cos(theta)*radius;
double target[3];
int i;
target[axis_linear] = position[axis_linear];
for (i=0; i<=segments; i++) {
target[axis_linear] += linear_per_segment;
theta += theta_per_segment;
target[axis_1] = center_x+sin(theta)*radius;
target[axis_2] = center_y+cos(theta)*radius;
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], feed_rate, invert_feed_rate);
}
}
void mc_go_home()

View File

@ -56,6 +56,8 @@ uint8_t stepper_mode = STEPPER_MODE_STOPPED;
void config_pace_timer(uint32_t microseconds);
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
// steps. Microseconds specify how many microseconds the move should take to perform.
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds) {
// Buffer nothing unless stepping subsystem is running
if (stepper_mode != STEPPER_MODE_RUNNING) { return; }

View File

@ -35,7 +35,8 @@ void st_init();
// Returns a bitmask with the stepper bit for the given axis set
uint8_t st_bit_for_stepper(int axis);
// Buffer a new line segment (might block until there is room in the buffer)
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
// steps. Microseconds specify how many microseconds the move should take to perform.
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t rate);
// Block until all buffered steps are executed