acceleration management implementation complete, now ready for testing on actual real machine

This commit is contained in:
Simen Svale Skogsrud 2011-01-24 21:30:51 +01:00
parent 0bc0fd7757
commit 32c038ddd3

View File

@ -101,7 +101,7 @@ void calculate_trapezoid_for_block(struct Block *block, double entry_factor, dou
block->decelerate_after = accelerate_steps+plateau_steps;
}
// Calculates the maximum allowable speed when you must be able to reach target_velocity using the
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance.
inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
return(sqrt(target_velocity*target_velocity-2*acceleration*distance));
@ -119,8 +119,8 @@ inline double junction_jerk(struct Block *before, struct Block *after) {
}
// The kernel called by recalculate_plan() when scanning the plan from last to first
int8_t planner_reverse_pass_kernel(struct Block *previous, struct Block *current, struct Block *next) {
if(!current){return(TRUE);}
void planner_reverse_pass_kernel(struct Block *previous, struct Block *current, struct Block *next) {
if(!current){return;}
double entry_factor = 1.0;
double exit_factor;
@ -138,7 +138,7 @@ int8_t planner_reverse_pass_kernel(struct Block *previous, struct Block *current
entry_factor = (settings.max_jerk/jerk);
}
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
if (exit_factor<entry_factor) {
if (entry_factor > exit_factor) {
double max_entry_speed = max_allowable_speed(-settings.acceleration,current->nominal_speed*exit_factor,
current->millimeters);
double max_entry_factor = max_entry_speed/current->nominal_speed;
@ -150,40 +150,75 @@ int8_t planner_reverse_pass_kernel(struct Block *previous, struct Block *current
entry_factor = 0.0;
}
// Check if we made a difference for this block. If we didn't, the planner can call it quits
// here. No need to process any earlier blocks.
int8_t keep_going = (entry_factor > current->entry_factor ? TRUE : FALSE);
// Store result and recalculate trapezoid parameters
// Store result
current->entry_factor = entry_factor;
calculate_trapezoid_for_block(current, entry_factor, exit_factor);
return(keep_going);
}
// recalculate_plan() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the reverse pass.
void reverse_pass() {
int8_t block_index = block_buffer_head;
void planner_reverse_pass() {
auto int8_t block_index = block_buffer_head;
struct Block *block[3] = {NULL, NULL, NULL};
while(block_index != block_buffer_tail) {
block[2]= block[1];
block[1]= block[0];
block[0] = &block_buffer[block_index];
if (!planner_reverse_pass_kernel(block[0], block[1], block[2])) {return;}
planner_reverse_pass_kernel(block[0], block[1], block[2]);
block_index = (block_index-1) % BLOCK_BUFFER_SIZE;
}
planner_reverse_pass_kernel(NULL, block[0], block[1]);
}
void forward_pass() {
int8_t block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
block_index = (block_index+1) % BLOCK_BUFFER_SIZE;
void planner_forward_pass_kernel(struct Block *previous, struct Block *current, struct Block *next) {
if(!current){return;}
// If the previous block is an acceleration block, but it is not long enough to
// complete the full speed change within the block, we need to adjust out entry
// speed accordingly. Remember current->entry_factor equals the exit factor of
// the previous block.
if(previous->entry_factor < current->entry_factor) {
double max_entry_speed = max_allowable_speed(-settings.acceleration,
current->nominal_speed*previous->entry_factor, previous->millimeters);
double max_entry_factor = max_entry_speed/current->nominal_speed;
if (max_entry_factor < current->entry_factor) {
current->entry_factor = max_entry_factor;
}
}
}
void recalculate_plan() {
reverse_pass();
forward_pass();
void planner_forward_pass() {
int8_t block_index = block_buffer_tail;
struct Block *block[3] = {NULL, NULL, NULL};
while(block_index != block_buffer_head) {
block[0] = block[1];
block[1] = block[2];
block[2] = &block_buffer[block_index];
planner_forward_pass_kernel(block[0],block[1],block[2]);
block_index = (block_index+1) % BLOCK_BUFFER_SIZE;
}
planner_forward_pass_kernel(block[1], block[2], NULL);
}
void planner_recalculate_trapezoids() {
int8_t block_index = block_buffer_tail;
struct Block *current;
struct Block *next = NULL;
while(block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
if (current) {
calculate_trapezoid_for_block(current, current->entry_factor, next->entry_factor);
}
block_index = (block_index+1) % BLOCK_BUFFER_SIZE;
}
calculate_trapezoid_for_block(next, next->entry_factor, 0.0);
}
void planner_recalculate() {
planner_reverse_pass();
planner_forward_pass();
planner_recalculate_trapezoids();
}
void plan_enable_acceleration_management() {
@ -257,10 +292,9 @@ void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_
if (steps_z < 0) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
// Move buffer head
block_buffer_head = next_buffer_head;
recalculate_plan();
planner_recalculate();
}
/*
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):