optimized for size and did some housekeeping
This commit is contained in:
parent
3e5e866115
commit
2992683c8d
17
gcode.c
17
gcode.c
@ -54,8 +54,6 @@
|
||||
#include "errno.h"
|
||||
#include "serial_protocol.h"
|
||||
|
||||
#include "wiring_serial.h"
|
||||
|
||||
#define NEXT_ACTION_DEFAULT 0
|
||||
#define NEXT_ACTION_DWELL 1
|
||||
#define NEXT_ACTION_GO_HOME 2
|
||||
@ -195,11 +193,11 @@ uint8_t gc_execute_line(char *line) {
|
||||
// If there were any errors parsing this line, we will return right away with the bad news
|
||||
if (gc.status_code) { return(gc.status_code); }
|
||||
|
||||
// Pass 2: Parameters
|
||||
counter = 0;
|
||||
clear_vector(offset);
|
||||
memcpy(target, gc.position, sizeof(target)); // target = gc.position
|
||||
|
||||
// Pass 2: Parameters
|
||||
while(next_statement(&letter, &value, line, &counter)) {
|
||||
int_value = trunc(value);
|
||||
unit_converted_value = to_millimeters(value);
|
||||
@ -313,7 +311,6 @@ uint8_t gc_execute_line(char *line) {
|
||||
// If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
|
||||
// real CNC, and thus - for practical reasons - we will terminate promptly:
|
||||
if(isnan(h_x2_div_d)) { FAIL(GCSTATUS_FLOATING_POINT_ERROR); return(gc.status_code); }
|
||||
|
||||
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
|
||||
if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
|
||||
|
||||
@ -336,10 +333,9 @@ uint8_t gc_execute_line(char *line) {
|
||||
|
||||
// Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
|
||||
// even though it is advised against ever generating such circles in a single line of g-code. By
|
||||
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposide side of the line of
|
||||
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
|
||||
// travel and thus we get the unadvisably long circles as prescribed.
|
||||
if (r < 0) { h_x2_div_d = -h_x2_div_d; }
|
||||
|
||||
if (r < 0) { h_x2_div_d = -h_x2_div_d; }
|
||||
// Complete the operation by calculating the actual center of the arc
|
||||
offset[gc.plane_axis_0] = (x-(y*h_x2_div_d))/2;
|
||||
offset[gc.plane_axis_1] = (y+(x*h_x2_div_d))/2;
|
||||
@ -375,12 +371,7 @@ uint8_t gc_execute_line(char *line) {
|
||||
}
|
||||
// Find the radius
|
||||
double radius = hypot(offset[gc.plane_axis_0], offset[gc.plane_axis_1]);
|
||||
// Prepare the arc
|
||||
// printString("mc_arc(");
|
||||
// printInteger(trunc(theta_start/M_PI*180)); printByte(',');
|
||||
// printInteger(trunc(angular_travel/M_PI*180)); printByte(',');
|
||||
// printInteger(trunc(radius));
|
||||
// printByte(')');
|
||||
// Trace the arc
|
||||
mc_arc(theta_start, angular_travel, radius, gc.plane_axis_0, gc.plane_axis_1, gc.feed_rate);
|
||||
break;
|
||||
}
|
||||
|
@ -34,13 +34,10 @@
|
||||
#include <stdlib.h>
|
||||
#include "nuts_bolts.h"
|
||||
#include "stepper.h"
|
||||
#include "serial_protocol.h"
|
||||
|
||||
#include "wiring_serial.h"
|
||||
|
||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
||||
|
||||
int8_t mode; // The current operation mode
|
||||
volatile int8_t mode; // The current operation mode
|
||||
int32_t position[3]; // The current position of the tool in absolute steps
|
||||
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
|
||||
|
||||
@ -51,7 +48,7 @@ void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate,
|
||||
|
||||
void mc_init()
|
||||
{
|
||||
mode = 0;
|
||||
mode = MC_MODE_AT_REST;
|
||||
clear_vector(position);
|
||||
}
|
||||
|
||||
@ -63,7 +60,7 @@ void mc_dwell(uint32_t milliseconds)
|
||||
mode = MC_MODE_AT_REST;
|
||||
}
|
||||
|
||||
// Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
||||
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
||||
// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement.
|
||||
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
||||
{
|
||||
@ -76,12 +73,12 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
|
||||
counter[3], // A counter used in the bresenham algorithm for line plotting
|
||||
maximum_steps; // The larges absolute step-count of any axis
|
||||
|
||||
|
||||
// Setup
|
||||
|
||||
target[X_AXIS] = x*X_STEPS_PER_MM;
|
||||
target[Y_AXIS] = y*Y_STEPS_PER_MM;
|
||||
target[Z_AXIS] = z*Z_STEPS_PER_MM;
|
||||
|
||||
mode = MC_MODE_LINEAR;
|
||||
|
||||
// Determine direction and travel magnitude for each axis
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
step_count[axis] = abs(target[axis] - position[axis]);
|
||||
@ -91,11 +88,7 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
|
||||
maximum_steps = max(step_count[Z_AXIS],
|
||||
max(step_count[X_AXIS], step_count[Y_AXIS]));
|
||||
// Nothing to do?
|
||||
if (maximum_steps == 0)
|
||||
{
|
||||
mode = MC_MODE_AT_REST;
|
||||
return;
|
||||
}
|
||||
if (maximum_steps == 0) { return; }
|
||||
// Set up a neat counter for each axis
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
counter[axis] = -maximum_steps/2;
|
||||
@ -118,6 +111,8 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
|
||||
|
||||
// Execution
|
||||
|
||||
mode = MC_MODE_LINEAR;
|
||||
|
||||
while(mode) {
|
||||
// Trace the line
|
||||
step_bits = 0;
|
||||
@ -142,7 +137,7 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
|
||||
}
|
||||
|
||||
|
||||
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
// circle in millimeters. axis_1 and axis_2 selects the plane in tool space.
|
||||
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
|
||||
@ -160,14 +155,15 @@ void mc_arc(double theta, double angular_travel, double radius, int axis_1, int
|
||||
int32_t error, x2, y2; // error is always == (x**2 + y**2 - radius**2),
|
||||
// x2 is always 2*x, y2 is always 2*y
|
||||
uint8_t axis_x, axis_y; // maps the arc axes to stepper axes
|
||||
int8_t diagonal_bits; // A bitmask with the stepper bits for both selected axes set
|
||||
int8_t diagonal_bits; // A bitmask with the stepper bits for both selected axes set
|
||||
int incomplete; // True if the arc has not reached its target yet
|
||||
|
||||
int dx, dy; // Trace directions
|
||||
|
||||
// Setup
|
||||
|
||||
uint32_t radius_steps = round(radius*X_STEPS_PER_MM);
|
||||
if(radius_steps == 0) { return; }
|
||||
mode = MC_MODE_ARC;
|
||||
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
|
||||
angular_direction = signof(angular_travel);
|
||||
// Calculate the initial position and target position in the local coordinate system of the arc
|
||||
@ -192,69 +188,63 @@ void mc_arc(double theta, double angular_travel, double radius, int axis_1, int
|
||||
// And map the local coordinate system of the arc onto the tool axes of the selected plane
|
||||
axis_x = axis_1;
|
||||
axis_y = axis_2;
|
||||
// The amount of steppings performed while tracing a full circle is equal to the sum of sides in a
|
||||
// square inscribed in the circle. We use this to estimate the amount of steps as if this arc was a full circle:
|
||||
// The amount of steppings performed while tracing a half circle is equal to the sum of sides in a
|
||||
// square inscribed in the circle. We use this to estimate the amount of steps as if this arc was a half circle:
|
||||
uint32_t steps_in_half_circle = round(radius_steps * 4 * (1/sqrt(2)));
|
||||
// We then calculate the millimeters of travel along the circumference of that same full circle
|
||||
// We then calculate the millimeters of travel along the circumference of that same half circle
|
||||
double millimeters_half_circumference = radius*M_PI;
|
||||
// Then we calculate the microseconds between each step as if we will trace the full circle.
|
||||
// It doesn't matter what fraction of the circle we are actuallyt going to trace. The pace is the same.
|
||||
st_buffer_pace(((millimeters_half_circumference * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / steps_in_half_circle);
|
||||
|
||||
incomplete = true;
|
||||
// It doesn't matter what fraction of the circle we are actually going to trace. The pace is the same.
|
||||
st_buffer_pace(((millimeters_half_circumference * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / steps_in_half_circle);
|
||||
|
||||
// Execution
|
||||
|
||||
mode = MC_MODE_ARC;
|
||||
|
||||
incomplete = true;
|
||||
while(incomplete)
|
||||
{
|
||||
dx = (y!=0) ? signof(y) * angular_direction : -signof(x);
|
||||
dy = (x!=0) ? -signof(x) * angular_direction : -signof(y);
|
||||
|
||||
// Take dx and dy which are local to the arc being generated and map them on to the
|
||||
// selected tool-space-axes for the current arc.
|
||||
direction[axis_x] = dx;
|
||||
direction[axis_y] = dy;
|
||||
set_stepper_directions(direction);
|
||||
|
||||
// Check which axis will be "major" for this stepping
|
||||
if (abs(x)<abs(y)) {
|
||||
// Step arc horizontally
|
||||
x+=dx;
|
||||
// Step arc horizontally
|
||||
error += 1+x2*dx;
|
||||
x2 += 2*dx;
|
||||
x+=dx; x2 += 2*dx;
|
||||
diagonal_error = error + 1 + y2*dy;
|
||||
if(abs(error) >= abs(diagonal_error)) {
|
||||
y += dy;
|
||||
y2 += 2*dy;
|
||||
y += dy; y2 += 2*dy;
|
||||
error = diagonal_error;
|
||||
step_steppers(diagonal_bits); // step diagonal
|
||||
} else {
|
||||
step_axis(axis_x); // step straight
|
||||
}
|
||||
} else {
|
||||
// Step arc vertically
|
||||
y+=dy;
|
||||
// Step arc vertically
|
||||
error += 1+y2*dy;
|
||||
y2 += 2*dy;
|
||||
y+=dy; y2 += 2*dy;
|
||||
diagonal_error = error + 1 + x2*dx;
|
||||
if(abs(error) >= abs(diagonal_error)) {
|
||||
x += dx;
|
||||
x2 += 2*dx;
|
||||
x += dx; x2 += 2*dx;
|
||||
error = diagonal_error;
|
||||
step_steppers(diagonal_bits); // step diagonal
|
||||
} else {
|
||||
step_axis(axis_y); // step straight
|
||||
}
|
||||
}
|
||||
|
||||
// Check if target has been reached
|
||||
}
|
||||
// Check if target has been reached. Todo: Simplify/optimize/clarify
|
||||
if ((x * target_direction_y >=
|
||||
target_x * target_direction_y) &&
|
||||
(y * target_direction_x <=
|
||||
target_y * target_direction_x))
|
||||
{ if ((signof(x) == signof(target_x)) && (signof(y) == signof(target_y)))
|
||||
{ incomplete = false; } }
|
||||
}
|
||||
|
||||
}
|
||||
// Update the tool position to the new actual position
|
||||
position[axis_x] += x-start_x;
|
||||
position[axis_y] += y-start_y;
|
||||
@ -275,7 +265,7 @@ int mc_status()
|
||||
return(mode);
|
||||
}
|
||||
|
||||
// Set the direction pins for the stepper motors according to the provided vector.
|
||||
// Set the direction bits for the stepper motors according to the provided vector.
|
||||
// direction is an array of three 8 bit integers representing the direction of
|
||||
// each motor. The values should be -1 (reverse), 0 or 1 (forward).
|
||||
void set_stepper_directions(int8_t *direction)
|
||||
@ -302,16 +292,5 @@ inline void step_steppers(uint8_t bits)
|
||||
// Step only one motor
|
||||
inline void step_axis(uint8_t axis)
|
||||
{
|
||||
switch (axis) {
|
||||
case X_AXIS: st_buffer_step(direction_bits | (1<<X_STEP_BIT)); break;
|
||||
case Y_AXIS: st_buffer_step(direction_bits | (1<<Y_STEP_BIT)); break;
|
||||
case Z_AXIS: st_buffer_step(direction_bits | (1<<Z_STEP_BIT)); break;
|
||||
}
|
||||
st_buffer_step(direction_bits | st_bit_for_stepper(axis));
|
||||
}
|
||||
|
||||
// Wait until all operations are completed
|
||||
void mc_wait()
|
||||
{
|
||||
st_synchronize();
|
||||
}
|
||||
|
||||
|
@ -54,13 +54,8 @@ void mc_go_home();
|
||||
// quiescence call mc_wait()
|
||||
void mc_execute();
|
||||
|
||||
// Wait until all operations complete
|
||||
void mc_wait();
|
||||
|
||||
// Check motion control status. result == 0: the system is idle. result > 0: the system is busy,
|
||||
// result < 0: the system is in an error state.
|
||||
int mc_status();
|
||||
|
||||
void printCurrentPosition();
|
||||
|
||||
#endif
|
||||
|
30
stepper.c
30
stepper.c
@ -32,6 +32,9 @@
|
||||
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
|
||||
#define STEP_BUFFER_SIZE 100
|
||||
|
||||
// A marker used to notify the stepper handler of a pace change
|
||||
#define PACE_CHANGE_MARKER 0xff
|
||||
|
||||
volatile uint8_t step_buffer[STEP_BUFFER_SIZE]; // A buffer for step instructions
|
||||
volatile int step_buffer_head = 0;
|
||||
volatile int step_buffer_tail = 0;
|
||||
@ -43,25 +46,26 @@ uint8_t echo_steps = true;
|
||||
|
||||
void config_pace_timer(uint32_t microseconds);
|
||||
|
||||
// This timer interrupt is executed at the pace set with set_pace. It pops one instruction from
|
||||
// This timer interrupt is executed at the pace set with st_buffer_pace. It pops one instruction from
|
||||
// the step_buffer, executes it. Then it starts timer2 in order to reset the motor port after
|
||||
// five microseconds.
|
||||
SIGNAL(SIG_OUTPUT_COMPARE1A)
|
||||
{
|
||||
if (step_buffer_head != step_buffer_tail) {
|
||||
if(step_buffer[step_buffer_tail] == 0xff) {
|
||||
// If this is not a step-instruction, but a pace-marker: change pace
|
||||
uint8_t popped = step_buffer[step_buffer_tail];
|
||||
if(popped == PACE_CHANGE_MARKER) {
|
||||
// This is not a step-instruction, but a pace-change-marker: change pace
|
||||
config_pace_timer(next_pace);
|
||||
next_pace = 0;
|
||||
} else {
|
||||
// Set the direction pins a nanosecond or two before you step the steppers
|
||||
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (step_buffer[step_buffer_tail] & DIRECTION_MASK);
|
||||
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (popped & DIRECTION_MASK);
|
||||
// Then pulse the stepping pins
|
||||
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | step_buffer[step_buffer_tail];
|
||||
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | popped;
|
||||
// Reset and start timer 2 which will reset the motor port after 5 microsecond
|
||||
TCNT2 = 0; // reset counter
|
||||
OCR2A = 5*TICKS_PER_MICROSECOND; // set the time
|
||||
TIMSK2 |= (1<<OCIE2A); // enable interrupt
|
||||
TCNT2 = 0; // reset counter
|
||||
OCR2A = 5*TICKS_PER_MICROSECOND; // set the trigger time
|
||||
TIMSK2 |= (1<<OCIE2A); // enable interrupt
|
||||
}
|
||||
// move the step buffer tail to the next instruction
|
||||
step_buffer_tail = (step_buffer_tail + 1) % STEP_BUFFER_SIZE;
|
||||
@ -101,7 +105,7 @@ void st_init()
|
||||
|
||||
sei();
|
||||
|
||||
// start off with a slow pace
|
||||
// start off with a mellow pace
|
||||
config_pace_timer(20000);
|
||||
st_start();
|
||||
}
|
||||
@ -163,12 +167,12 @@ void st_buffer_pace(uint32_t microseconds)
|
||||
{
|
||||
// Do nothing if the pace in unchanged
|
||||
if (current_pace == microseconds) { return; }
|
||||
// If the one-element pace buffer is full, flush step buffer
|
||||
if (next_pace != 0) {
|
||||
st_synchronize();
|
||||
// If the single-element pace "buffer" is full, sleep until it is popped
|
||||
while (next_pace != 0) {
|
||||
sleep_mode();
|
||||
}
|
||||
next_pace = microseconds;
|
||||
st_buffer_step(0xff);
|
||||
st_buffer_step(PACE_CHANGE_MARKER); // Place a pace-change marker in the step-buffer
|
||||
}
|
||||
|
||||
uint8_t st_bit_for_stepper(int axis) {
|
||||
|
11
todo.txt
11
todo.txt
@ -1,15 +1,14 @@
|
||||
* Support helical interpolation
|
||||
* Optimize arc target detection code utilizing the primary axis of travel
|
||||
* Use bitmasks, not vectors to build steps in motion_control
|
||||
* Arcs might be a step or two off because of FP gotchas. Must add a little nudge in the end there
|
||||
* Generalize feed rate code and support inverse feed rate for arcs
|
||||
* Arcs might be a step or two off because of FP gotchas. Must add a little nudge in the end there?
|
||||
* Support inverse feed rate for arcs
|
||||
* Implement homing cycle in stepper.c
|
||||
* Implement limit switch support in stepper.c (use port-triggered interrupts?)
|
||||
* How on earth am I going to deal with arcs in setups that have different steps/mm on each axis? Must
|
||||
support elipses?! Oh no.
|
||||
* Support helical interpolation
|
||||
* Eliminate need for circle_x and circle_y in step_arc_along_
|
||||
* Eliminate need for x and y in step_arc_along_
|
||||
* Tool table
|
||||
* Tool length offsets
|
||||
* Tool change M6
|
||||
* Path Control Modes
|
||||
* Spindle speed support
|
||||
* Spindle speed support
|
||||
|
Loading…
Reference in New Issue
Block a user