optimized for size, shaved 2k
This commit is contained in:
parent
c07a322589
commit
05bacc436e
16
gcode.c
16
gcode.c
@ -52,6 +52,7 @@
|
||||
#include "spindle_control.h"
|
||||
#include "geometry.h"
|
||||
#include "errno.h"
|
||||
#include "serial_protocol.h"
|
||||
|
||||
#include "wiring_serial.h"
|
||||
|
||||
@ -126,7 +127,6 @@ void select_plane(uint8_t axis_0, uint8_t axis_1)
|
||||
// characters and signed floats (no whitespace).
|
||||
uint8_t gc_execute_line(char *line) {
|
||||
int counter = 0;
|
||||
int requires_nudge = false;
|
||||
char letter;
|
||||
double value;
|
||||
double unit_converted_value;
|
||||
@ -238,6 +238,7 @@ uint8_t gc_execute_line(char *line) {
|
||||
}
|
||||
|
||||
// Perform any physical actions
|
||||
sp_send_execution_marker();
|
||||
switch (next_action) {
|
||||
case NEXT_ACTION_GO_HOME: mc_go_home(); break;
|
||||
case NEXT_ACTION_DWELL: mc_dwell(trunc(p*1000)); break;
|
||||
@ -246,10 +247,10 @@ uint8_t gc_execute_line(char *line) {
|
||||
case MOTION_MODE_CANCEL: break;
|
||||
case MOTION_MODE_RAPID_LINEAR: case MOTION_MODE_LINEAR:
|
||||
if (gc.inverse_feed_rate_mode) {
|
||||
mc_linear_motion(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
|
||||
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
|
||||
inverse_feed_rate, true);
|
||||
} else {
|
||||
mc_linear_motion(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
|
||||
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
|
||||
(gc.motion_mode == MOTION_MODE_LINEAR) ? gc.feed_rate : RAPID_FEEDRATE,
|
||||
false);
|
||||
}
|
||||
@ -383,19 +384,10 @@ uint8_t gc_execute_line(char *line) {
|
||||
// printInteger(trunc(radius));
|
||||
// printByte(')');
|
||||
mc_arc(theta_start, angular_travel, radius, gc.plane_axis_0, gc.plane_axis_1, gc.feed_rate);
|
||||
// Rounding errors means the arcing might not land us exactly where we wanted. Thats why this
|
||||
// operation must be finalized with a linear nudge to the exact target spot.
|
||||
requires_nudge = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
mc_execute();
|
||||
if (requires_nudge) {
|
||||
mc_linear_motion(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], gc.feed_rate, false);
|
||||
mc_execute();
|
||||
}
|
||||
|
||||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
// in any intermediate location.
|
||||
|
423
motion_control.c
423
motion_control.c
@ -40,17 +40,117 @@
|
||||
|
||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
||||
|
||||
// Parameters when mode is MC_MODE_ARC
|
||||
struct LinearMotionParameters {
|
||||
int8_t mode; // The current operation mode
|
||||
int32_t position[3]; // The current position of the tool in absolute steps
|
||||
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
|
||||
|
||||
void set_stepper_directions(int8_t *direction);
|
||||
inline void step_steppers(uint8_t bits);
|
||||
inline void step_axis(uint8_t axis);
|
||||
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
|
||||
|
||||
void mc_init()
|
||||
{
|
||||
mode = 0;
|
||||
clear_vector(position);
|
||||
}
|
||||
|
||||
void mc_dwell(uint32_t milliseconds)
|
||||
{
|
||||
mode = MC_MODE_DWELL;
|
||||
st_synchronize();
|
||||
_delay_ms(milliseconds);
|
||||
mode = MC_MODE_AT_REST;
|
||||
}
|
||||
|
||||
// Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
||||
// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement.
|
||||
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
||||
{
|
||||
// Flags to keep track of which axes to step
|
||||
uint8_t step_bits;
|
||||
uint8_t axis; // loop variable
|
||||
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
|
||||
uint16_t feed_rate;
|
||||
int32_t target[3], // The target position in absolute steps
|
||||
step_count[3], // Absolute steps of travel along each axis
|
||||
counter[3], // A counter used in the bresenham algorithm for line plotting
|
||||
maximum_steps; // The larges absolute step-count of any axis
|
||||
};
|
||||
|
||||
target[X_AXIS] = x*X_STEPS_PER_MM;
|
||||
target[Y_AXIS] = y*Y_STEPS_PER_MM;
|
||||
target[Z_AXIS] = z*Z_STEPS_PER_MM;
|
||||
|
||||
mode = MC_MODE_LINEAR;
|
||||
|
||||
// Determine direction and travel magnitude for each axis
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
step_count[axis] = abs(target[axis] - position[axis]);
|
||||
direction[axis] = signof(target[axis] - position[axis]);
|
||||
}
|
||||
// Find the magnitude of the axis with the longest travel
|
||||
maximum_steps = max(step_count[Z_AXIS],
|
||||
max(step_count[X_AXIS], step_count[Y_AXIS]));
|
||||
// Nothing to do?
|
||||
if (maximum_steps == 0)
|
||||
{
|
||||
mode = MC_MODE_AT_REST;
|
||||
return;
|
||||
}
|
||||
// Set up a neat counter for each axis
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
counter[axis] = -maximum_steps/2;
|
||||
}
|
||||
// Set our direction pins
|
||||
set_stepper_directions(direction);
|
||||
// Calculate the microseconds we need to wait between each step to achieve the desired feed rate
|
||||
if (invert_feed_rate) {
|
||||
st_buffer_pace((feed_rate*1000000)/maximum_steps);
|
||||
} else {
|
||||
// Ask old Phytagoras to estimate how many mm our next move is going to take us:
|
||||
double millimeters_to_travel =
|
||||
sqrt(pow(X_STEPS_PER_MM*step_count[X_AXIS],2) +
|
||||
pow(Y_STEPS_PER_MM*step_count[Y_AXIS],2) +
|
||||
pow(Z_STEPS_PER_MM*step_count[Z_AXIS],2));
|
||||
// Calculate the microseconds between steps that we should wait in order to travel the
|
||||
// designated amount of millimeters in the amount of steps we are going to generate
|
||||
st_buffer_pace(((millimeters_to_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / maximum_steps);
|
||||
}
|
||||
|
||||
// Execution
|
||||
|
||||
while(mode) {
|
||||
// Trace the line
|
||||
step_bits = 0;
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
if (target[axis] != position[axis])
|
||||
{
|
||||
counter[axis] += step_count[axis];
|
||||
if (counter[axis] > 0)
|
||||
{
|
||||
step_bits |= st_bit_for_stepper(axis);
|
||||
counter[axis] -= maximum_steps;
|
||||
position[axis] += direction[axis];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (step_bits) {
|
||||
step_steppers(step_bits);
|
||||
} else {
|
||||
mode = MC_MODE_AT_REST;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
// circle in millimeters. axis_1 and axis_2 selects the plane in tool space.
|
||||
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
|
||||
void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2, double feed_rate)
|
||||
{
|
||||
uint32_t start_x, start_y;
|
||||
uint32_t diagonal_error;
|
||||
|
||||
struct ArcMotionParameters {
|
||||
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
|
||||
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
|
||||
int32_t x, y, target_x, target_y; // current position and target position in the
|
||||
@ -60,157 +160,38 @@ struct ArcMotionParameters {
|
||||
int32_t error, x2, y2; // error is always == (x**2 + y**2 - radius**2),
|
||||
// x2 is always 2*x, y2 is always 2*y
|
||||
uint8_t axis_x, axis_y; // maps the arc axes to stepper axes
|
||||
int8_t plane_steppers[3]; // A vector with the steppers of axis_x and axis_y set to 1, the remaining 0
|
||||
int8_t diagonal_bits; // A bitmask with the stepper bits for both selected axes set
|
||||
int incomplete; // True if the arc has not reached its target yet
|
||||
};
|
||||
|
||||
/* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to
|
||||
read, but lets us initialize the state of the system by just clearing a single, contigous block of memory.
|
||||
By overlaying the variables of the different modes in a union we save a few bytes of precious SRAM.
|
||||
*/
|
||||
struct MotionControlState {
|
||||
int8_t mode; // The current operation mode
|
||||
int32_t position[3]; // The current position of the tool in absolute steps
|
||||
int32_t pace; // Microseconds between each update in the current mode
|
||||
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
|
||||
union {
|
||||
struct LinearMotionParameters linear; // variables used in MC_MODE_LINEAR
|
||||
struct ArcMotionParameters arc; // variables used in MC_MODE_ARC
|
||||
uint32_t dwell_milliseconds; // variable used in MC_MODE_DWELL
|
||||
};
|
||||
};
|
||||
struct MotionControlState mc;
|
||||
|
||||
void set_stepper_directions(int8_t *direction);
|
||||
inline void step_steppers(uint8_t *enabled);
|
||||
inline void step_axis(uint8_t axis);
|
||||
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
|
||||
|
||||
void mc_init()
|
||||
{
|
||||
// Initialize state variables
|
||||
memset(&mc, 0, sizeof(mc));
|
||||
}
|
||||
|
||||
void mc_dwell(uint32_t milliseconds)
|
||||
{
|
||||
mc.mode = MC_MODE_DWELL;
|
||||
mc.dwell_milliseconds = milliseconds;
|
||||
}
|
||||
|
||||
// Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
||||
// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement.
|
||||
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
||||
{
|
||||
memset(&mc.linear, 0, sizeof(mc.arc));
|
||||
|
||||
mc.linear.target[X_AXIS] = x*X_STEPS_PER_MM;
|
||||
mc.linear.target[Y_AXIS] = y*Y_STEPS_PER_MM;
|
||||
mc.linear.target[Z_AXIS] = z*Z_STEPS_PER_MM;
|
||||
|
||||
mc.mode = MC_MODE_LINEAR;
|
||||
uint8_t axis; // loop variable
|
||||
// Determine direction and travel magnitude for each axis
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
mc.linear.step_count[axis] = abs(mc.linear.target[axis] - mc.position[axis]);
|
||||
mc.linear.direction[axis] = signof(mc.linear.target[axis] - mc.position[axis]);
|
||||
}
|
||||
// Find the magnitude of the axis with the longest travel
|
||||
mc.linear.maximum_steps = max(mc.linear.step_count[Z_AXIS],
|
||||
max(mc.linear.step_count[X_AXIS], mc.linear.step_count[Y_AXIS]));
|
||||
// Nothing to do?
|
||||
if (mc.linear.maximum_steps == 0)
|
||||
{
|
||||
mc.mode = MC_MODE_AT_REST;
|
||||
return;
|
||||
}
|
||||
// Set up a neat counter for each axis
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
mc.linear.counter[axis] = -mc.linear.maximum_steps/2;
|
||||
}
|
||||
// Set our direction pins
|
||||
set_stepper_directions(mc.linear.direction);
|
||||
// Calculate the microseconds we need to wait between each step to achieve the desired feed rate
|
||||
if (invert_feed_rate) {
|
||||
mc.pace =
|
||||
(feed_rate*1000000)/mc.linear.maximum_steps;
|
||||
} else {
|
||||
// Ask old Phytagoras to estimate how many mm our next move is going to take us:
|
||||
double millimeters_to_travel =
|
||||
sqrt(pow(X_STEPS_PER_MM*mc.linear.step_count[X_AXIS],2) +
|
||||
pow(Y_STEPS_PER_MM*mc.linear.step_count[Y_AXIS],2) +
|
||||
pow(Z_STEPS_PER_MM*mc.linear.step_count[Z_AXIS],2));
|
||||
// Calculate the microseconds between steps that we should wait in order to travel the
|
||||
// designated amount of millimeters in the amount of steps we are going to generate
|
||||
mc.pace =
|
||||
((millimeters_to_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / mc.linear.maximum_steps;
|
||||
}
|
||||
}
|
||||
int dx, dy; // Trace directions
|
||||
|
||||
void execute_linear_motion()
|
||||
{
|
||||
// Flags to keep track of which axes to step
|
||||
uint8_t step[3];
|
||||
uint8_t axis; // loop variable
|
||||
|
||||
while(mc.mode) {
|
||||
// Trace the line
|
||||
clear_vector(step);
|
||||
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
if (mc.linear.target[axis] != mc.position[axis])
|
||||
{
|
||||
mc.linear.counter[axis] += mc.linear.step_count[axis];
|
||||
if (mc.linear.counter[axis] > 0)
|
||||
{
|
||||
step[axis] = true;
|
||||
mc.linear.counter[axis] -= mc.linear.maximum_steps;
|
||||
mc.position[axis] += mc.linear.direction[axis];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (step[X_AXIS] | step[Y_AXIS] | step[Z_AXIS]) {
|
||||
step_steppers(step);
|
||||
} else {
|
||||
mc.mode = MC_MODE_AT_REST;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
// circle in millimeters. axis_1 and axis_2 selects the plane in tool space.
|
||||
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
|
||||
void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2, double feed_rate)
|
||||
{
|
||||
memset(&mc.arc, 0, sizeof(mc.arc));
|
||||
uint32_t radius_steps = round(radius*X_STEPS_PER_MM);
|
||||
if(radius_steps == 0) { return; }
|
||||
mc.mode = MC_MODE_ARC;
|
||||
mode = MC_MODE_ARC;
|
||||
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
|
||||
mc.arc.angular_direction = signof(angular_travel);
|
||||
angular_direction = signof(angular_travel);
|
||||
// Calculate the initial position and target position in the local coordinate system of the arc
|
||||
mc.arc.x = round(sin(theta)*radius_steps);
|
||||
mc.arc.y = round(cos(theta)*radius_steps);
|
||||
mc.arc.target_x = trunc(sin(theta+angular_travel)*radius_steps);
|
||||
mc.arc.target_y = trunc(cos(theta+angular_travel)*radius_steps);
|
||||
start_x = x = round(sin(theta)*radius_steps);
|
||||
start_y = y = round(cos(theta)*radius_steps);
|
||||
target_x = trunc(sin(theta+angular_travel)*radius_steps);
|
||||
target_y = trunc(cos(theta+angular_travel)*radius_steps);
|
||||
// Precalculate these values to optimize target detection
|
||||
mc.arc.target_direction_x = signof(mc.arc.target_x)*mc.arc.angular_direction;
|
||||
mc.arc.target_direction_y = signof(mc.arc.target_y)*mc.arc.angular_direction;
|
||||
target_direction_x = signof(target_x)*angular_direction;
|
||||
target_direction_y = signof(target_y)*angular_direction;
|
||||
// The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error
|
||||
// <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we
|
||||
// are exactly on top of the arc.
|
||||
mc.arc.error = mc.arc.x*mc.arc.x + mc.arc.y*mc.arc.y - radius_steps*radius_steps;
|
||||
error = x*x + y*y - radius_steps*radius_steps;
|
||||
// Because the error-value moves in steps of (+/-)2x+1 and (+/-)2y+1 we save a couple of multiplications
|
||||
// by keeping track of the doubles of the arc coordinates at all times.
|
||||
mc.arc.x2 = 2*mc.arc.x;
|
||||
mc.arc.y2 = 2*mc.arc.y;
|
||||
|
||||
x2 = 2*x;
|
||||
y2 = 2*y;
|
||||
// Set up a vector with the steppers we are going to use tracing the plane of this arc
|
||||
mc.arc.plane_steppers[axis_1] = 1;
|
||||
mc.arc.plane_steppers[axis_2] = 1;
|
||||
diagonal_bits = st_bit_for_stepper(axis_1);
|
||||
diagonal_bits |= st_bit_for_stepper(axis_2);
|
||||
// And map the local coordinate system of the arc onto the tool axes of the selected plane
|
||||
mc.arc.axis_x = axis_1;
|
||||
mc.arc.axis_y = axis_2;
|
||||
axis_x = axis_1;
|
||||
axis_y = axis_2;
|
||||
// The amount of steppings performed while tracing a full circle is equal to the sum of sides in a
|
||||
// square inscribed in the circle. We use this to estimate the amount of steps as if this arc was a full circle:
|
||||
uint32_t steps_in_half_circle = round(radius_steps * 4 * (1/sqrt(2)));
|
||||
@ -218,121 +199,80 @@ void mc_arc(double theta, double angular_travel, double radius, int axis_1, int
|
||||
double millimeters_half_circumference = radius*M_PI;
|
||||
// Then we calculate the microseconds between each step as if we will trace the full circle.
|
||||
// It doesn't matter what fraction of the circle we are actuallyt going to trace. The pace is the same.
|
||||
mc.pace =
|
||||
((millimeters_half_circumference * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / steps_in_half_circle;
|
||||
mc.arc.incomplete = true;
|
||||
}
|
||||
st_buffer_pace(((millimeters_half_circumference * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / steps_in_half_circle);
|
||||
|
||||
incomplete = true;
|
||||
|
||||
#define check_arc_target \
|
||||
if ((mc.arc.x * mc.arc.target_direction_y >= \
|
||||
mc.arc.target_x * mc.arc.target_direction_y) && \
|
||||
(mc.arc.y * mc.arc.target_direction_x <= \
|
||||
mc.arc.target_y * mc.arc.target_direction_x)) \
|
||||
{ if ((signof(mc.arc.x) == signof(mc.arc.target_x)) && (signof(mc.arc.y) == signof(mc.arc.target_y))) \
|
||||
{ mc.arc.incomplete = false; } }
|
||||
|
||||
// Internal method used by execute_arc to trace horizontally in the general direction provided by dx and dy
|
||||
void step_arc_along_x(int8_t dx, int8_t dy)
|
||||
{
|
||||
uint32_t diagonal_error;
|
||||
mc.arc.x+=dx;
|
||||
mc.arc.error += 1+mc.arc.x2*dx;
|
||||
mc.arc.x2 += 2*dx;
|
||||
diagonal_error = mc.arc.error + 1 + mc.arc.y2*dy;
|
||||
if(abs(mc.arc.error) >= abs(diagonal_error)) {
|
||||
mc.arc.y += dy;
|
||||
mc.arc.y2 += 2*dy;
|
||||
mc.arc.error = diagonal_error;
|
||||
step_steppers(mc.arc.plane_steppers); // step diagonal
|
||||
} else {
|
||||
step_axis(mc.arc.axis_x); // step straight
|
||||
}
|
||||
check_arc_target;
|
||||
}
|
||||
|
||||
// Internal method used by execute_arc to trace vertically in the general direction provided by dx and dy
|
||||
void step_arc_along_y(int8_t dx, int8_t dy)
|
||||
{
|
||||
uint32_t diagonal_error;
|
||||
mc.arc.y+=dy;
|
||||
mc.arc.error += 1+mc.arc.y2*dy;
|
||||
mc.arc.y2 += 2*dy;
|
||||
diagonal_error = mc.arc.error + 1 + mc.arc.x2*dx;
|
||||
if(abs(mc.arc.error) >= abs(diagonal_error)) {
|
||||
mc.arc.x += dx;
|
||||
mc.arc.x2 += 2*dx;
|
||||
mc.arc.error = diagonal_error;
|
||||
step_steppers(mc.arc.plane_steppers); // step diagonal
|
||||
} else {
|
||||
step_axis(mc.arc.axis_y); // step straight
|
||||
}
|
||||
check_arc_target;
|
||||
}
|
||||
|
||||
// Will trace the configured arc until the target is reached.
|
||||
void execute_arc()
|
||||
{
|
||||
uint32_t start_x = mc.arc.x;
|
||||
uint32_t start_y = mc.arc.y;
|
||||
int dx, dy; // Trace directions
|
||||
|
||||
// mc.mode is set to 0 (MC_MODE_AT_REST) when target is reached
|
||||
while(mc.arc.incomplete)
|
||||
// Execution
|
||||
|
||||
while(incomplete)
|
||||
{
|
||||
dx = (mc.arc.y!=0) ? signof(mc.arc.y) * mc.arc.angular_direction : -signof(mc.arc.x);
|
||||
dy = (mc.arc.x!=0) ? -signof(mc.arc.x) * mc.arc.angular_direction : -signof(mc.arc.y);
|
||||
dx = (y!=0) ? signof(y) * angular_direction : -signof(x);
|
||||
dy = (x!=0) ? -signof(x) * angular_direction : -signof(y);
|
||||
|
||||
// Take dx and dy which are local to the arc being generated and map them on to the
|
||||
// selected tool-space-axes for the current arc.
|
||||
mc.arc.direction[mc.arc.axis_x] = dx;
|
||||
mc.arc.direction[mc.arc.axis_y] = dy;
|
||||
set_stepper_directions(mc.arc.direction);
|
||||
direction[axis_x] = dx;
|
||||
direction[axis_y] = dy;
|
||||
set_stepper_directions(direction);
|
||||
|
||||
if (abs(mc.arc.x)<abs(mc.arc.y)) {
|
||||
step_arc_along_x(dx,dy);
|
||||
if (abs(x)<abs(y)) {
|
||||
// Step arc horizontally
|
||||
x+=dx;
|
||||
error += 1+x2*dx;
|
||||
x2 += 2*dx;
|
||||
diagonal_error = error + 1 + y2*dy;
|
||||
if(abs(error) >= abs(diagonal_error)) {
|
||||
y += dy;
|
||||
y2 += 2*dy;
|
||||
error = diagonal_error;
|
||||
step_steppers(diagonal_bits); // step diagonal
|
||||
} else {
|
||||
step_axis(axis_x); // step straight
|
||||
}
|
||||
} else {
|
||||
step_arc_along_y(dx,dy);
|
||||
// Step arc vertically
|
||||
y+=dy;
|
||||
error += 1+y2*dy;
|
||||
y2 += 2*dy;
|
||||
diagonal_error = error + 1 + x2*dx;
|
||||
if(abs(error) >= abs(diagonal_error)) {
|
||||
x += dx;
|
||||
x2 += 2*dx;
|
||||
error = diagonal_error;
|
||||
step_steppers(diagonal_bits); // step diagonal
|
||||
} else {
|
||||
step_axis(axis_y); // step straight
|
||||
}
|
||||
}
|
||||
|
||||
// Check if target has been reached
|
||||
if ((x * target_direction_y >=
|
||||
target_x * target_direction_y) &&
|
||||
(y * target_direction_x <=
|
||||
target_y * target_direction_x))
|
||||
{ if ((signof(x) == signof(target_x)) && (signof(y) == signof(target_y)))
|
||||
{ incomplete = false; } }
|
||||
}
|
||||
|
||||
// Update the tool position to the new actual position
|
||||
mc.position[mc.arc.axis_x] += mc.arc.x-start_x;
|
||||
mc.position[mc.arc.axis_y] += mc.arc.y-start_y;
|
||||
mc.mode = MC_MODE_AT_REST;
|
||||
position[axis_x] += x-start_x;
|
||||
position[axis_y] += y-start_y;
|
||||
mode = MC_MODE_AT_REST;
|
||||
}
|
||||
|
||||
void mc_go_home()
|
||||
{
|
||||
mc.mode = MC_MODE_HOME;
|
||||
}
|
||||
|
||||
void execute_go_home()
|
||||
{
|
||||
mode = MC_MODE_HOME;
|
||||
st_go_home();
|
||||
st_synchronize();
|
||||
clear_vector(mc.position); // By definition this is location [0, 0, 0]
|
||||
mc.mode = MC_MODE_AT_REST;
|
||||
}
|
||||
|
||||
void mc_execute() {
|
||||
if (mc.mode != MC_MODE_AT_REST) {
|
||||
st_buffer_pace(mc.pace);
|
||||
sp_send_execution_marker();
|
||||
while(mc.mode) { // Loop because one task might start another task
|
||||
switch(mc.mode) {
|
||||
case MC_MODE_AT_REST: break;
|
||||
case MC_MODE_DWELL: st_synchronize(); _delay_ms(mc.dwell_milliseconds); mc.mode = MC_MODE_AT_REST; break;
|
||||
case MC_MODE_LINEAR: execute_linear_motion(); break;
|
||||
case MC_MODE_ARC: execute_arc(); break;
|
||||
case MC_MODE_HOME: execute_go_home(); break;
|
||||
}
|
||||
}
|
||||
}
|
||||
clear_vector(position); // By definition this is location [0, 0, 0]
|
||||
mode = MC_MODE_AT_REST;
|
||||
}
|
||||
|
||||
int mc_status()
|
||||
{
|
||||
return(mc.mode);
|
||||
return(mode);
|
||||
}
|
||||
|
||||
// Set the direction pins for the stepper motors according to the provided vector.
|
||||
@ -345,7 +285,7 @@ void set_stepper_directions(int8_t *direction)
|
||||
way we can generate the whole direction bit-mask without doing any comparisions
|
||||
or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry.
|
||||
*/
|
||||
mc.direction_bits = (
|
||||
direction_bits = (
|
||||
((direction[X_AXIS]&0x80)>>(7-X_DIRECTION_BIT)) |
|
||||
((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) |
|
||||
((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT)));
|
||||
@ -354,19 +294,18 @@ void set_stepper_directions(int8_t *direction)
|
||||
// Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one
|
||||
// stepper motor in the order X, Y, Z. Set the bytes of the steppers you want to step to
|
||||
// 1, and the rest to 0.
|
||||
inline void step_steppers(uint8_t *enabled)
|
||||
inline void step_steppers(uint8_t bits)
|
||||
{
|
||||
st_buffer_step(mc.direction_bits | (enabled[X_AXIS]<<X_STEP_BIT) |
|
||||
(enabled[Y_AXIS]<<Y_STEP_BIT) | (enabled[Z_AXIS]<<Z_STEP_BIT));
|
||||
st_buffer_step(direction_bits | bits);
|
||||
}
|
||||
|
||||
// Step only one motor
|
||||
inline void step_axis(uint8_t axis)
|
||||
{
|
||||
switch (axis) {
|
||||
case X_AXIS: st_buffer_step(mc.direction_bits | (1<<X_STEP_BIT)); break;
|
||||
case Y_AXIS: st_buffer_step(mc.direction_bits | (1<<Y_STEP_BIT)); break;
|
||||
case Z_AXIS: st_buffer_step(mc.direction_bits | (1<<Z_STEP_BIT)); break;
|
||||
case X_AXIS: st_buffer_step(direction_bits | (1<<X_STEP_BIT)); break;
|
||||
case Y_AXIS: st_buffer_step(direction_bits | (1<<Y_STEP_BIT)); break;
|
||||
case Z_AXIS: st_buffer_step(direction_bits | (1<<Z_STEP_BIT)); break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -34,7 +34,7 @@ void mc_init();
|
||||
|
||||
// Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
||||
// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement.
|
||||
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate);
|
||||
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate);
|
||||
|
||||
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
|
12
stepper.c
12
stepper.c
@ -108,7 +108,8 @@ void st_init()
|
||||
|
||||
void st_buffer_step(uint8_t motor_port_bits)
|
||||
{
|
||||
if (echo_steps) {
|
||||
if (echo_steps && !(motor_port_bits&0x80)) {
|
||||
// Echo steps. If bit 7 is set, the message is internal to Grbl and should not be echoed
|
||||
printByte('!'+motor_port_bits);
|
||||
}
|
||||
|
||||
@ -170,6 +171,15 @@ void st_buffer_pace(uint32_t microseconds)
|
||||
st_buffer_step(0xff);
|
||||
}
|
||||
|
||||
uint8_t st_bit_for_stepper(int axis) {
|
||||
switch(axis) {
|
||||
case X_AXIS: return(1<<X_STEP_BIT);
|
||||
case Y_AXIS: return(1<<Y_STEP_BIT);
|
||||
case Z_AXIS: return(1<<Z_STEP_BIT);
|
||||
}
|
||||
return(0);
|
||||
}
|
||||
|
||||
void config_pace_timer(uint32_t microseconds)
|
||||
{
|
||||
uint32_t ticks = microseconds*TICKS_PER_MICROSECOND;
|
||||
|
@ -32,8 +32,11 @@
|
||||
// Initialize and start the stepper motor subsystem
|
||||
void st_init();
|
||||
|
||||
// Set the rate steps are taken from the buffer and executed
|
||||
void st_set_pace(uint32_t microseconds);
|
||||
// Returns a bitmask with the stepper bit for the given axis set
|
||||
uint8_t st_bit_for_stepper(int axis);
|
||||
|
||||
// Buffer a change in the rate steps are taken from the buffer and executed
|
||||
void st_buffer_pace(uint32_t microseconds);
|
||||
|
||||
// Buffer a new instruction for the steppers
|
||||
void st_buffer_step(uint8_t motor_port_bits);
|
||||
|
Loading…
Reference in New Issue
Block a user