purged debug code
This commit is contained in:
parent
29f914391d
commit
041a8b8a3f
@ -176,12 +176,6 @@ SIGNAL(TIMER1_COMPA_vect)
|
|||||||
// If current block is finished, reset pointer
|
// If current block is finished, reset pointer
|
||||||
step_events_completed += 1;
|
step_events_completed += 1;
|
||||||
if (step_events_completed >= current_block->step_event_count) {
|
if (step_events_completed >= current_block->step_event_count) {
|
||||||
// printInteger(current_block->exit_rate);
|
|
||||||
// printString(" == ");
|
|
||||||
// printInteger(trapezoid_adjusted_rate);
|
|
||||||
// printString(" <-- exit, actual\n\r");
|
|
||||||
// printInteger(current_block->rate_delta);
|
|
||||||
// printString(" <-- delta\n\r");
|
|
||||||
current_block = NULL;
|
current_block = NULL;
|
||||||
plan_discard_current_block();
|
plan_discard_current_block();
|
||||||
}
|
}
|
||||||
|
@ -115,8 +115,6 @@ inline double intersection_distance(double initial_rate, double final_rate, doub
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
void calculate_trapezoid_for_block(block_t *block, double entry_factor, double exit_factor) {
|
void calculate_trapezoid_for_block(block_t *block, double entry_factor, double exit_factor) {
|
||||||
// printString("---/-\\---\n\r");
|
|
||||||
// printInteger(entry_factor*1000); printString(" -> "); printInteger(exit_factor*1000); printString("\n\r");
|
|
||||||
block->initial_rate = ceil(block->nominal_rate*entry_factor);
|
block->initial_rate = ceil(block->nominal_rate*entry_factor);
|
||||||
int32_t final_rate = ceil(block->nominal_rate*exit_factor);
|
int32_t final_rate = ceil(block->nominal_rate*exit_factor);
|
||||||
int32_t acceleration_per_minute = block->rate_delta*ACCELERATION_TICKS_PER_SECOND*60.0;
|
int32_t acceleration_per_minute = block->rate_delta*ACCELERATION_TICKS_PER_SECOND*60.0;
|
||||||
@ -124,12 +122,9 @@ void calculate_trapezoid_for_block(block_t *block, double entry_factor, double e
|
|||||||
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_minute));
|
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_minute));
|
||||||
int32_t decelerate_steps =
|
int32_t decelerate_steps =
|
||||||
ceil(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration_per_minute));
|
ceil(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration_per_minute));
|
||||||
// printInteger(accelerate_steps);printString("<-accelerate_steps\n\r");
|
|
||||||
// printInteger(decelerate_steps);printString("<-decelerate_steps\n\r");
|
|
||||||
|
|
||||||
// Calculate the size of Plateau of Nominal Rate.
|
// Calculate the size of Plateau of Nominal Rate.
|
||||||
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
||||||
// printInteger(plateau_steps);printString("<-plateau_steps\n\r");
|
|
||||||
|
|
||||||
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
||||||
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
||||||
@ -138,14 +133,10 @@ void calculate_trapezoid_for_block(block_t *block, double entry_factor, double e
|
|||||||
accelerate_steps = ceil(
|
accelerate_steps = ceil(
|
||||||
intersection_distance(block->initial_rate, final_rate, acceleration_per_minute, block->step_event_count));
|
intersection_distance(block->initial_rate, final_rate, acceleration_per_minute, block->step_event_count));
|
||||||
plateau_steps = 0;
|
plateau_steps = 0;
|
||||||
// printString("no plateau\n\r");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
block->accelerate_until = accelerate_steps;
|
block->accelerate_until = accelerate_steps;
|
||||||
block->decelerate_after = accelerate_steps+plateau_steps;
|
block->decelerate_after = accelerate_steps+plateau_steps;
|
||||||
// printInteger(block->accelerate_until);printString(",");
|
|
||||||
// printInteger(block->decelerate_after);printString(" of ");
|
|
||||||
// printInteger(block->step_event_count); printString(" <- profile\n\r");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||||
@ -160,16 +151,6 @@ inline double max_allowable_speed(double acceleration, double target_velocity, d
|
|||||||
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
||||||
// velocities of the respective blocks.
|
// velocities of the respective blocks.
|
||||||
inline double junction_jerk(block_t *before, block_t *after) {
|
inline double junction_jerk(block_t *before, block_t *after) {
|
||||||
// printString("x: ");
|
|
||||||
// printInteger(before->speed_x);
|
|
||||||
// printString(", ");
|
|
||||||
// printInteger(after->speed_x);
|
|
||||||
// printString("\n\r");
|
|
||||||
// printString("y: ");
|
|
||||||
// printInteger(before->speed_y);
|
|
||||||
// printString(", ");
|
|
||||||
// printInteger(after->speed_y);
|
|
||||||
// printString("\n\r");
|
|
||||||
return(sqrt(
|
return(sqrt(
|
||||||
pow(before->speed_x-after->speed_x, 2)+
|
pow(before->speed_x-after->speed_x, 2)+
|
||||||
pow(before->speed_y-after->speed_y, 2)+
|
pow(before->speed_y-after->speed_y, 2)+
|
||||||
@ -186,7 +167,6 @@ double factor_for_safe_speed(block_t *block) {
|
|||||||
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
||||||
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||||
if(!current) { return; }
|
if(!current) { return; }
|
||||||
// printString("----------\n\r");
|
|
||||||
|
|
||||||
double entry_factor = 1.0;
|
double entry_factor = 1.0;
|
||||||
double exit_factor;
|
double exit_factor;
|
||||||
@ -200,37 +180,21 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
|
|||||||
if (previous) {
|
if (previous) {
|
||||||
// Reduce speed so that junction_jerk is within the maximum allowed
|
// Reduce speed so that junction_jerk is within the maximum allowed
|
||||||
double jerk = junction_jerk(previous, current);
|
double jerk = junction_jerk(previous, current);
|
||||||
// printInteger(jerk*1000.0);
|
|
||||||
// printString("j\n");
|
|
||||||
if (jerk > settings.max_jerk) {
|
if (jerk > settings.max_jerk) {
|
||||||
entry_factor = (settings.max_jerk/jerk);
|
entry_factor = (settings.max_jerk/jerk);
|
||||||
}
|
}
|
||||||
// printInteger(entry_factor*1000.0);
|
|
||||||
// printString("e\n");
|
|
||||||
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
|
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
|
||||||
if (entry_factor > exit_factor) {
|
if (entry_factor > exit_factor) {
|
||||||
double max_entry_speed = max_allowable_speed(-settings.acceleration,current->nominal_speed*exit_factor,
|
double max_entry_speed = max_allowable_speed(-settings.acceleration,current->nominal_speed*exit_factor,
|
||||||
current->millimeters);
|
current->millimeters);
|
||||||
// printInteger(current->nominal_speed*exit_factor*1000.0);
|
|
||||||
// printString("exit_v\n");
|
|
||||||
// printInteger(current->millimeters*1000.0);
|
|
||||||
// printString("mm\n");
|
|
||||||
// printInteger(max_entry_speed*1000.0);
|
|
||||||
// printString("max_v\n");
|
|
||||||
double max_entry_factor = max_entry_speed/current->nominal_speed;
|
double max_entry_factor = max_entry_speed/current->nominal_speed;
|
||||||
if (max_entry_factor < entry_factor) {
|
if (max_entry_factor < entry_factor) {
|
||||||
entry_factor = max_entry_factor;
|
entry_factor = max_entry_factor;
|
||||||
}
|
}
|
||||||
// printInteger(entry_factor*1000.0);
|
|
||||||
// printString("e2\n");
|
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
entry_factor = factor_for_safe_speed(current);
|
entry_factor = factor_for_safe_speed(current);
|
||||||
}
|
}
|
||||||
// printInteger(current->nominal_speed*1000);printString("<- ns\n\r");
|
|
||||||
// printInteger(entry_factor*1000); printString("<- entry-f\n\r");
|
|
||||||
// printInteger(exit_factor*1000); printString("<- exit-f\n\r");
|
|
||||||
// printInteger((uint16_t)current); printString("<-addr\n\r");
|
|
||||||
|
|
||||||
// Store result
|
// Store result
|
||||||
current->entry_factor = entry_factor;
|
current->entry_factor = entry_factor;
|
||||||
@ -246,7 +210,6 @@ void planner_reverse_pass() {
|
|||||||
if(block_index < 0) {
|
if(block_index < 0) {
|
||||||
block_index = BLOCK_BUFFER_SIZE-1;
|
block_index = BLOCK_BUFFER_SIZE-1;
|
||||||
}
|
}
|
||||||
// printInteger(block_index); printString(" <-- index");
|
|
||||||
block[2]= block[1];
|
block[2]= block[1];
|
||||||
block[1]= block[0];
|
block[1]= block[0];
|
||||||
block[0] = &block_buffer[block_index];
|
block[0] = &block_buffer[block_index];
|
||||||
@ -325,11 +288,9 @@ void planner_recalculate_trapezoids() {
|
|||||||
// 3. Recalculate trapezoids for all blocks.
|
// 3. Recalculate trapezoids for all blocks.
|
||||||
|
|
||||||
void planner_recalculate() {
|
void planner_recalculate() {
|
||||||
// printString("replan\n\r");
|
|
||||||
planner_reverse_pass();
|
planner_reverse_pass();
|
||||||
planner_forward_pass();
|
planner_forward_pass();
|
||||||
planner_recalculate_trapezoids();
|
planner_recalculate_trapezoids();
|
||||||
// printString("replan done\n\r");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void plan_init() {
|
void plan_init() {
|
||||||
@ -402,16 +363,11 @@ void plan_buffer_line(double x, double y, double z, double feed_rate, int invert
|
|||||||
|
|
||||||
// Calculate speed in mm/minute for each axis
|
// Calculate speed in mm/minute for each axis
|
||||||
double multiplier = 60.0*1000000.0/microseconds;
|
double multiplier = 60.0*1000000.0/microseconds;
|
||||||
// printInteger(multiplier*1000); printString("<-multi\n\r");
|
|
||||||
block->speed_x = x*multiplier;
|
block->speed_x = x*multiplier;
|
||||||
block->speed_y = y*multiplier;
|
block->speed_y = y*multiplier;
|
||||||
block->speed_z = z*multiplier;
|
block->speed_z = z*multiplier;
|
||||||
block->nominal_speed = block->millimeters*multiplier;
|
block->nominal_speed = block->millimeters*multiplier;
|
||||||
// printInteger(millimeters*1000); printString("<-mm\n\r");
|
|
||||||
// printInteger(block->nominal_speed*1000); printString("<-ns\n\r");
|
|
||||||
block->nominal_rate = ceil(block->step_event_count*multiplier);
|
block->nominal_rate = ceil(block->step_event_count*multiplier);
|
||||||
// printInteger(block->nominal_rate*1000); printString("<-nr\n\r");
|
|
||||||
// printInteger((uint16_t)block); printString("<-addr\n\r");
|
|
||||||
block->entry_factor = 0.0;
|
block->entry_factor = 0.0;
|
||||||
|
|
||||||
// Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
|
// Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
|
||||||
|
Loading…
Reference in New Issue
Block a user