From 041a8b8a3ff526477b98f09f5def6589b4e5efee Mon Sep 17 00:00:00 2001 From: Simen Svale Skogsrud Date: Mon, 7 Feb 2011 00:07:08 +0100 Subject: [PATCH] purged debug code --- stepper.c | 6 ------ stepper_plan.c | 44 -------------------------------------------- 2 files changed, 50 deletions(-) diff --git a/stepper.c b/stepper.c index d03c026..ab05dfc 100644 --- a/stepper.c +++ b/stepper.c @@ -176,12 +176,6 @@ SIGNAL(TIMER1_COMPA_vect) // If current block is finished, reset pointer step_events_completed += 1; if (step_events_completed >= current_block->step_event_count) { - // printInteger(current_block->exit_rate); - // printString(" == "); - // printInteger(trapezoid_adjusted_rate); - // printString(" <-- exit, actual\n\r"); - // printInteger(current_block->rate_delta); - // printString(" <-- delta\n\r"); current_block = NULL; plan_discard_current_block(); } diff --git a/stepper_plan.c b/stepper_plan.c index 6075d96..861cf8d 100644 --- a/stepper_plan.c +++ b/stepper_plan.c @@ -115,8 +115,6 @@ inline double intersection_distance(double initial_rate, double final_rate, doub */ void calculate_trapezoid_for_block(block_t *block, double entry_factor, double exit_factor) { - // printString("---/-\\---\n\r"); - // printInteger(entry_factor*1000); printString(" -> "); printInteger(exit_factor*1000); printString("\n\r"); block->initial_rate = ceil(block->nominal_rate*entry_factor); int32_t final_rate = ceil(block->nominal_rate*exit_factor); int32_t acceleration_per_minute = block->rate_delta*ACCELERATION_TICKS_PER_SECOND*60.0; @@ -124,12 +122,9 @@ void calculate_trapezoid_for_block(block_t *block, double entry_factor, double e ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_minute)); int32_t decelerate_steps = ceil(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration_per_minute)); - // printInteger(accelerate_steps);printString("<-accelerate_steps\n\r"); - // printInteger(decelerate_steps);printString("<-decelerate_steps\n\r"); // Calculate the size of Plateau of Nominal Rate. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; - // printInteger(plateau_steps);printString("<-plateau_steps\n\r"); // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will // have to use intersection_distance() to calculate when to abort acceleration and start braking @@ -138,14 +133,10 @@ void calculate_trapezoid_for_block(block_t *block, double entry_factor, double e accelerate_steps = ceil( intersection_distance(block->initial_rate, final_rate, acceleration_per_minute, block->step_event_count)); plateau_steps = 0; - // printString("no plateau\n\r"); } block->accelerate_until = accelerate_steps; block->decelerate_after = accelerate_steps+plateau_steps; - // printInteger(block->accelerate_until);printString(","); - // printInteger(block->decelerate_after);printString(" of "); - // printInteger(block->step_event_count); printString(" <- profile\n\r"); } // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the @@ -160,16 +151,6 @@ inline double max_allowable_speed(double acceleration, double target_velocity, d // This method will calculate the junction jerk as the euclidean distance between the nominal // velocities of the respective blocks. inline double junction_jerk(block_t *before, block_t *after) { - // printString("x: "); - // printInteger(before->speed_x); - // printString(", "); - // printInteger(after->speed_x); - // printString("\n\r"); - // printString("y: "); - // printInteger(before->speed_y); - // printString(", "); - // printInteger(after->speed_y); - // printString("\n\r"); return(sqrt( pow(before->speed_x-after->speed_x, 2)+ pow(before->speed_y-after->speed_y, 2)+ @@ -186,7 +167,6 @@ double factor_for_safe_speed(block_t *block) { // The kernel called by planner_recalculate() when scanning the plan from last to first entry. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { if(!current) { return; } - // printString("----------\n\r"); double entry_factor = 1.0; double exit_factor; @@ -200,37 +180,21 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n if (previous) { // Reduce speed so that junction_jerk is within the maximum allowed double jerk = junction_jerk(previous, current); - // printInteger(jerk*1000.0); - // printString("j\n"); if (jerk > settings.max_jerk) { entry_factor = (settings.max_jerk/jerk); } - // printInteger(entry_factor*1000.0); - // printString("e\n"); // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly. if (entry_factor > exit_factor) { double max_entry_speed = max_allowable_speed(-settings.acceleration,current->nominal_speed*exit_factor, current->millimeters); - // printInteger(current->nominal_speed*exit_factor*1000.0); - // printString("exit_v\n"); - // printInteger(current->millimeters*1000.0); - // printString("mm\n"); - // printInteger(max_entry_speed*1000.0); - // printString("max_v\n"); double max_entry_factor = max_entry_speed/current->nominal_speed; if (max_entry_factor < entry_factor) { entry_factor = max_entry_factor; } - // printInteger(entry_factor*1000.0); - // printString("e2\n"); } } else { entry_factor = factor_for_safe_speed(current); } - // printInteger(current->nominal_speed*1000);printString("<- ns\n\r"); - // printInteger(entry_factor*1000); printString("<- entry-f\n\r"); - // printInteger(exit_factor*1000); printString("<- exit-f\n\r"); - // printInteger((uint16_t)current); printString("<-addr\n\r"); // Store result current->entry_factor = entry_factor; @@ -246,7 +210,6 @@ void planner_reverse_pass() { if(block_index < 0) { block_index = BLOCK_BUFFER_SIZE-1; } - // printInteger(block_index); printString(" <-- index"); block[2]= block[1]; block[1]= block[0]; block[0] = &block_buffer[block_index]; @@ -325,11 +288,9 @@ void planner_recalculate_trapezoids() { // 3. Recalculate trapezoids for all blocks. void planner_recalculate() { - // printString("replan\n\r"); planner_reverse_pass(); planner_forward_pass(); planner_recalculate_trapezoids(); - // printString("replan done\n\r"); } void plan_init() { @@ -402,16 +363,11 @@ void plan_buffer_line(double x, double y, double z, double feed_rate, int invert // Calculate speed in mm/minute for each axis double multiplier = 60.0*1000000.0/microseconds; - // printInteger(multiplier*1000); printString("<-multi\n\r"); block->speed_x = x*multiplier; block->speed_y = y*multiplier; block->speed_z = z*multiplier; block->nominal_speed = block->millimeters*multiplier; - // printInteger(millimeters*1000); printString("<-mm\n\r"); - // printInteger(block->nominal_speed*1000); printString("<-ns\n\r"); block->nominal_rate = ceil(block->step_event_count*multiplier); - // printInteger(block->nominal_rate*1000); printString("<-nr\n\r"); - // printInteger((uint16_t)block); printString("<-addr\n\r"); block->entry_factor = 0.0; // Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line