grbl-LPC-CoreXY/serial.c

194 lines
4.4 KiB
C
Raw Normal View History

2009-01-25 00:48:56 +01:00
/*
serial.c - serial functions.
2009-01-25 00:48:56 +01:00
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
*/
2010-03-07 23:10:41 +01:00
#include <math.h>
#include <avr/pgmspace.h>
2011-02-04 21:10:17 +01:00
#include <avr/interrupt.h>
2009-01-25 00:48:56 +01:00
// Define constants and variables for buffering incoming serial data. We're
// using a ring buffer (I think), in which rx_buffer_head is the index of the
// location to which to write the next incoming character and rx_buffer_tail
// is the index of the location from which to read.
#ifdef __AVR_ATmega328P__
#define RX_BUFFER_SIZE 256
#else
#define RX_BUFFER_SIZE 64
#endif
2009-01-25 00:48:56 +01:00
#define TX_BUFFER_SIZE 16
uint8_t rx_buffer[RX_BUFFER_SIZE];
uint8_t rx_buffer_head = 0;
uint8_t rx_buffer_tail = 0;
uint8_t tx_buffer[TX_BUFFER_SIZE];
uint8_t tx_buffer_head = 0;
volatile uint8_t tx_buffer_tail = 0;
2009-01-25 00:48:56 +01:00
void beginSerial(long baud)
{
UBRR0H = ((F_CPU / 16 + baud / 2) / baud - 1) >> 8;
UBRR0L = ((F_CPU / 16 + baud / 2) / baud - 1);
/* baud doubler off - Only needed on Uno XXX */
UCSR0A &= ~(1 << U2X0);
2009-01-25 00:48:56 +01:00
// enable rx and tx
2011-02-04 21:10:17 +01:00
UCSR0B |= 1<<RXEN0;
UCSR0B |= 1<<TXEN0;
2009-01-25 00:48:56 +01:00
// enable interrupt on complete reception of a byte
2011-02-04 21:10:17 +01:00
UCSR0B |= 1<<RXCIE0;
2009-01-25 00:48:56 +01:00
// defaults to 8-bit, no parity, 1 stop bit
}
void serialWrite(uint8_t data) {
uint8_t next_head = (tx_buffer_head + 1) % TX_BUFFER_SIZE;
2009-01-25 00:48:56 +01:00
// wait until there's a space in the buffer
while (next_head == tx_buffer_tail) ;
tx_buffer[tx_buffer_head] = data;
tx_buffer_head = next_head;
// enable the Data Register Empty Interrupt
UCSR0B |= (1 << UDRIE0);
}
// interrupt called on Data Register Empty
SIGNAL(USART_UDRE_vect) {
// temporary tx_buffer_tail
// (to optimize for volatile, there are no interrupts inside an interrupt routine)
uint8_t tail = tx_buffer_tail;
// get a byte from the buffer
uint8_t data = tx_buffer[tail];
// send the byte
UDR0 = data;
// update tail position
tail ++;
tail %= TX_BUFFER_SIZE;
// if the buffer is empty, disable the interrupt
if (tail == tx_buffer_head) {
UCSR0B &= ~(1 << UDRIE0);
}
tx_buffer_tail = tail;
2009-01-25 00:48:56 +01:00
}
// Returns true if there is any data in the read buffer
int serialAnyAvailable()
2009-01-25 00:48:56 +01:00
{
return (rx_buffer_head != rx_buffer_tail);
2009-01-25 00:48:56 +01:00
}
uint8_t serialRead()
2009-01-25 00:48:56 +01:00
{
if (!serialAnyAvailable()) {
2009-01-25 00:48:56 +01:00
return -1;
} else {
uint8_t data = rx_buffer[rx_buffer_tail];
2009-01-25 00:48:56 +01:00
rx_buffer_tail = (rx_buffer_tail + 1) % RX_BUFFER_SIZE;
return data;
2009-01-25 00:48:56 +01:00
}
}
SIGNAL(USART_RX_vect)
2009-01-25 00:48:56 +01:00
{
uint8_t data = UDR0;
uint8_t next_head = (rx_buffer_head + 1) % RX_BUFFER_SIZE;
2009-01-25 00:48:56 +01:00
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (next_head != rx_buffer_tail) {
rx_buffer[rx_buffer_head] = data;
rx_buffer_head = next_head;
2009-01-25 00:48:56 +01:00
}
}
void printByte(unsigned char c)
{
serialWrite((uint8_t) c);
2009-01-25 00:48:56 +01:00
}
void printString(const char *s)
{
while (*s)
printByte(*s++);
}
2010-03-07 23:10:41 +01:00
// Print a string stored in PGM-memory
void printPgmString(const char *s)
{
char c;
while ((c = pgm_read_byte_near(s++)))
printByte(c);
}
2009-01-25 00:48:56 +01:00
void printIntegerInBase(unsigned long n, unsigned long base)
{
unsigned char buf[8 * sizeof(long)]; // Assumes 8-bit chars.
unsigned long i = 0;
if (n == 0) {
printByte('0');
return;
}
while (n > 0) {
buf[i++] = n % base;
n /= base;
}
for (; i > 0; i--)
printByte(buf[i - 1] < 10 ?
'0' + buf[i - 1] :
'A' + buf[i - 1] - 10);
}
void printInteger(long n)
{
if (n < 0) {
printByte('-');
n = -n;
}
printIntegerInBase(n, 10);
}
void printFloat(double n)
{
double integer_part, fractional_part;
fractional_part = modf(n, &integer_part);
printInteger(integer_part);
printByte('.');
printInteger(round(fractional_part*1000));
}