56 Commits
v1.1 ... 2.0

Author SHA1 Message Date
1aa0b191be Added instructions for Node-RED
Updated Features
2019-02-24 21:57:41 +01:00
200d3c06c9 Merge branch 'master' of https://github.com/NimmLor/esp8266-fastled-webserver 2019-02-24 21:48:27 +01:00
539804fbc8 Added Node-RED integration
Added Alexa integration
Added support for custom patterns
2019-02-24 21:48:14 +01:00
3132613ad5 Renamed the file 2019-02-18 08:10:48 +01:00
18db8e2882 Updated Readme.md
Small setup hint added
2019-02-14 10:14:21 +01:00
bdabc3f7cd Updated Readme.md
Updated the Upcoming Features section
2019-02-14 10:05:43 +01:00
938a2bd773 Delete web-app-simple-thumb.png 2019-01-27 11:03:27 +01:00
92c879b499 Delete web-app-simple.png 2019-01-27 11:03:19 +01:00
519e070130 Delete web-app-thumb.png 2019-01-27 11:03:13 +01:00
489259711a Delete web-app.png 2019-01-27 11:03:06 +01:00
b7c672a53f Delete webapp.png 2019-01-27 11:02:37 +01:00
7a5feb09be Updated image paths
Renamed the repository so i had to adapt the image urls.
2019-01-23 15:22:17 +01:00
053fbf1aed Added missing checkbox and slider 2019-01-20 14:29:42 +01:00
f2542fe996 Add files via upload 2019-01-18 16:44:30 +01:00
88c6dc6e51 Delete DSC_8620.JPG 2019-01-16 09:10:02 +01:00
40c9ac4536 Delete DSC_8619.JPG 2019-01-16 09:09:16 +01:00
1e9861d6d0 Delete DSC_8617.JPG 2019-01-16 09:07:01 +01:00
f377ae2742 Delete DSC_8616.JPG 2019-01-16 09:06:53 +01:00
e205f8bece Delete test.md 2019-01-16 09:06:02 +01:00
dc07ab11e4 Delete rgb_preview.gif 2019-01-16 09:05:46 +01:00
b83e48016c Merge branch 'master' of https://github.com/NimmLor/esp8266-fastled-webserver 2019-01-15 20:20:20 +01:00
1b9535651a Adapted code to work with nanoleafs:
- adapted some vfx
- created easy config section
- added single leaf control to the ui
2019-01-15 20:17:58 +01:00
5c9ab4f749 Add files via upload 2019-01-15 20:03:05 +01:00
0db34d27ef Add files via upload 2019-01-14 21:01:02 +01:00
b31c73e217 Add files via upload 2019-01-14 20:56:31 +01:00
85d99b6a7f Add files via upload 2019-01-14 18:54:12 +01:00
0c16edc65c Delete circuit.jpg 2019-01-14 18:54:00 +01:00
1edb9517cb Add files via upload 2019-01-14 18:51:57 +01:00
2d08fa5b96 Add files via upload 2019-01-13 20:07:10 +01:00
94700bf4d3 Create test.md 2019-01-13 20:06:42 +01:00
cec7952757 Delete test.md 2019-01-13 19:48:42 +01:00
3376514e01 Create test.md 2019-01-13 19:48:33 +01:00
e57869202e Adapted code to work with the DIY-Nanoleafs 2019-01-13 16:45:50 +01:00
757e3b2fd8 Update simple.htm 2018-12-16 09:54:34 -06:00
e2d546bf8c Issue #88: Fire and water with more than 256 leds
Fixed #88 - Fire and water effect fails with more than 256 leds, thanks to @vkiisler
2018-11-07 18:03:12 -06:00
cdb02c9bbf Misc changes
Simplified wi-fi, reverting back to explicit AP or STA modes.
Moved wifi ssid and password to Secrets.h file, which is intentionally omitted from git.
Commented out websockets while troubleshooting wi-fi and jitter issues.
Removed delay while wi-fi connecting, just show the LEDs already!
WIP jitter fixes/improvements.  This configuration all but eliminates jitter on my test setups.
Added different FastLED interrupt options (commented out).
Auto-formatted file.
2018-10-06 13:09:10 -05:00
04103b80a3 Update TwinkleFOX.h 2018-03-18 17:30:31 -05:00
669acec2c8 Merge pull request #64 from rudelm/wifi-ap-fix
added code from https://github.com/jasoncoon/esp8266-fastled-webserver/issues/62
2018-01-30 10:59:29 -06:00
813970de78 added code from https://github.com/jasoncoon/esp8266-fastled-webserver/issues/62 2018-01-30 17:30:09 +01:00
83cc76340a Merge pull request #56 from bwarman/master
Fixed documentation
2018-01-05 18:50:30 -06:00
f58c2b3dbd Fixed documentation
Fixed documentation to reflect proper file for wifi credentials.
2018-01-05 10:43:55 -05:00
a974f0c481 Merge branch 'master' into v1.1 2017-12-31 14:45:23 -06:00
432fbb95d9 Updated README, fixed Arduino ESP8266FS tool link. 2017-12-12 13:36:45 -06:00
350feed191 Update README.md 2017-10-14 12:47:30 -05:00
410186e6a5 Update README.md 2017-06-22 15:33:28 -05:00
c17cea3426 Improved instructions. 2017-05-06 11:30:15 -05:00
407fd536c2 Fixed #25 (brightness not restored on startup) 2017-05-05 19:09:37 -05:00
020b0b0e43 Fixed autoplay compile error. 2017-02-23 19:22:51 -06:00
681c29a877 Added palette selector
* Added palette selector and supporting code.
* Switched several patterns to use the selected palette: Confetti,
Sinelon, BPM, Juggle
* Limit EEPROM writes in autoplay mode.
2017-02-18 13:24:05 -06:00
9bc7b7a5e7 Merge pull request #20 from seanspotatobusiness/master
Libraries part of readme
2017-02-18 11:40:20 -06:00
e28346a6ee Update README.md 2017-01-27 22:18:50 +00:00
95e5f27caf Update README.md 2017-01-27 22:13:38 +00:00
608a7827d2 Update README.md 2017-01-27 22:11:49 +00:00
f49ca2d1f9 Merge pull request #12 from seanspotatobusiness/master
Update to README?
2017-01-12 15:19:06 -06:00
1e9b486cfd Update README.md
Added Step to download files from GitHub (not obvious what to download or where if you're new to this)
2017-01-12 18:57:23 +00:00
f5702fe80f Update README.md
Added Arduino IDE preparations to Installing section.
2017-01-12 16:19:20 +00:00
57 changed files with 7885 additions and 971 deletions

3
.vs/ProjectSettings.json Normal file
View File

@ -0,0 +1,3 @@
{
"CurrentProjectSetting": "Visual Micro"
}

View File

@ -0,0 +1,9 @@
{
"ExpandedNodes": [
"",
"\\data",
"\\data\\images"
],
"SelectedNode": "\\esp8266-fastled-webserver.ino",
"PreviewInSolutionExplorer": false
}

113
.vs/__vm/.vsarduino.h Normal file
View File

@ -0,0 +1,113 @@
/*
Editor: https://www.visualmicro.com/
visual micro and the arduino ide ignore this code during compilation. this code is automatically maintained by visualmicro, manual changes to this file will be overwritten
the contents of the Visual Micro sketch sub folder can be deleted prior to publishing a project
all non-arduino files created by visual micro and all visual studio project or solution files can be freely deleted and are not required to compile a sketch (do not delete your own code!).
note: debugger breakpoints are stored in '.sln' or '.asln' files, knowledge of last uploaded breakpoints is stored in the upload.vmps.xml file. Both files are required to continue a previous debug session without needing to compile and upload again
Hardware: WeMos D1 R2 & mini, Platform=esp8266, Package=esp8266
*/
#if defined(_VMICRO_INTELLISENSE)
#ifndef _VSARDUINO_H_
#define _VSARDUINO_H_
#define __ESP8266_ESp8266__
#define __ESP8266_ESP8266__
#define __ets__
#define ICACHE_FLASH
#define F_CPU 80000000L
#define LWIP_OPEN_SRC
#define TCP_MSS 536
#define ARDUINO 10807
#define ARDUINO_ESP8266_WEMOS_D1MINI
#define ARDUINO_ARCH_ESP8266
#define ESP8266
#define __cplusplus 201103L
#undef __cplusplus
#define __cplusplus 201103L
#define __STDC__
#define __ARM__
#define __arm__
#define __inline__
#define __asm__(x)
#define __asm__
#define __extension__
#define __ATTR_PURE__
#define __ATTR_CONST__
#define __volatile__
#define __ASM
#define __INLINE
#define __attribute__(noinline)
//#define _STD_BEGIN
//#define EMIT
#define WARNING
#define _Lockit
#define __CLR_OR_THIS_CALL
#define C4005
#define _NEW
//typedef int uint8_t;
//#define __ARMCC_VERSION 400678
//#define PROGMEM
//#define string_literal
//
//#define prog_void
//#define PGM_VOID_P int
//
typedef int _read;
typedef int _seek;
typedef int _write;
typedef int _close;
typedef int __cleanup;
//#define inline
#define __builtin_clz
#define __builtin_clzl
#define __builtin_clzll
#define __builtin_labs
#define __builtin_va_list
typedef int __gnuc_va_list;
#define __ATOMIC_ACQ_REL
#define __CHAR_BIT__
#define _EXFUN()
typedef unsigned char byte;
extern "C" void __cxa_pure_virtual() {;}
typedef long __INTPTR_TYPE__ ;
typedef long __UINTPTR_TYPE__ ;
typedef long __SIZE_TYPE__ ;
typedef long __PTRDIFF_TYPE__;
#include "new"
#include "Esp.h"
#include <arduino.h>
#include <pins_arduino.h>
#include "..\generic\Common.h"
#include "..\generic\pins_arduino.h"
#undef F
#define F(string_literal) ((const PROGMEM char *)(string_literal))
#undef PSTR
#define PSTR(string_literal) ((const PROGMEM char *)(string_literal))
//current vc++ does not understand this syntax so use older arduino example for intellisense
//todo:move to the new clang/gcc project types.
#define interrupts() sei()
#define noInterrupts() cli()
#include "esp8266-fastled-webserver.ino"
#endif
#endif

File diff suppressed because it is too large Load Diff

Binary file not shown.

BIN
.vs/slnx.sqlite Normal file

Binary file not shown.

47
CppProperties.json Normal file
View File

@ -0,0 +1,47 @@
{
"configurations": [
{
"name": "Visual Micro",
"intelliSenseMode": "msvc-x64",
"includePath": [
"${projectRoot}..\\esp8266-fastled-webserver",
"D:\\Music\\Documents\\Arduino\\libraries\\FastLED",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\libraries\\ESP8266WiFi\\src",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\libraries\\ESP8266WebServer\\src",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\libraries\\ESP8266HTTPUpdateServer\\src",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\libraries\\EEPROM",
"S:\\Software\\Arduino\\libraries",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\libraries",
"D:\\Music\\Documents\\Arduino\\libraries",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\cores\\esp8266",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\cores\\esp8266\\libb64",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\cores\\esp8266\\spiffs",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\cores\\esp8266\\umm_malloc",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\variants\\d1_mini",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\tools\\sdk\\include",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\tools\\sdk\\lwip2\\include",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\tools\\sdk\\libc\\xtensa-lx106-elf\\include",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\tools\\xtensa-lx106-elf-gcc\\1.20.0-26-gb404fb9-2\\xtensa-lx106-elf\\include\\c++\\4.8.2",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\tools\\xtensa-lx106-elf-gcc\\1.20.0-26-gb404fb9-2\\xtensa-lx106-elf\\include\\c++\\4.8.2\\xtensa-lx106-elf",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\tools\\xtensa-lx106-elf-gcc\\1.20.0-26-gb404fb9-2\\xtensa-lx106-elf\\include",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\tools\\xtensa-lx106-elf-gcc\\1.20.0-26-gb404fb9-2\\lib\\gcc\\xtensa-lx106-elf\\4.8.2\\include",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\tools\\sdk\\include"
],
"defines": [
"__ESP8266_ESp8266__",
"__ESP8266_ESP8266__",
"__ets__",
"ICACHE_FLASH",
"F_CPU=80000000L",
"LWIP_OPEN_SRC",
"TCP_MSS=536",
"ARDUINO=10807",
"ARDUINO_ESP8266_WEMOS_D1MINI",
"ARDUINO_ARCH_ESP8266",
"ESP8266",
"__cplusplus=201103L",
"_VMICRO_INTELLISENSE"
]
}
]
}

View File

@ -81,6 +81,14 @@ String getAutoplayDuration() {
return String(autoplayDuration);
}
String getAllLeafs() {
return String(allLeafs);
}
String getSelectedLeaf() {
return String(selectedLeaf);
}
String getSolidColor() {
return String(solidColor.r) + "," + String(solidColor.g) + "," + String(solidColor.b);
}
@ -114,6 +122,9 @@ FieldList fields = {
{ "autoplay", "Autoplay", SectionFieldType },
{ "autoplay", "Autoplay", BooleanFieldType, 0, 1, getAutoplay },
{ "autoplayDuration", "Autoplay Duration", NumberFieldType, 0, 255, getAutoplayDuration },
{ "allLeafs", "Color Leafs", SectionFieldType },
{ "allLeafs", "Color All Leafs", BooleanFieldType, 0, 1, getAllLeafs },
{ "selectedLeaf", "Select Leaf to Color", NumberFieldType, 1, LEAFCOUNT, getSelectedLeaf },
{ "solidColor", "Solid Color", SectionFieldType },
{ "solidColor", "Color", ColorFieldType, 0, 255, getSolidColor },
{ "fire", "Fire & Water", SectionFieldType },

View File

@ -10,460 +10,493 @@
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 16 bytes of program space.
DEFINE_GRADIENT_PALETTE( ib_jul01_gp ) {
0, 194, 1, 1,
94, 1, 29, 18,
132, 57,131, 28,
255, 113, 1, 1};
DEFINE_GRADIENT_PALETTE(ib_jul01_gp) {
0, 194, 1, 1,
94, 1, 29, 18,
132, 57, 131, 28,
255, 113, 1, 1
};
// Gradient palette "es_vintage_57_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/vintage/tn/es_vintage_57.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_vintage_57_gp ) {
0, 2, 1, 1,
53, 18, 1, 0,
104, 69, 29, 1,
153, 167,135, 10,
255, 46, 56, 4};
DEFINE_GRADIENT_PALETTE(es_vintage_57_gp) {
0, 2, 1, 1,
53, 18, 1, 0,
104, 69, 29, 1,
153, 167, 135, 10,
255, 46, 56, 4
};
// Gradient palette "es_vintage_01_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/vintage/tn/es_vintage_01.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 32 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_vintage_01_gp ) {
0, 4, 1, 1,
51, 16, 0, 1,
76, 97,104, 3,
101, 255,131, 19,
127, 67, 9, 4,
153, 16, 0, 1,
229, 4, 1, 1,
255, 4, 1, 1};
DEFINE_GRADIENT_PALETTE(es_vintage_01_gp) {
0, 4, 1, 1,
51, 16, 0, 1,
76, 97, 104, 3,
101, 255, 131, 19,
127, 67, 9, 4,
153, 16, 0, 1,
229, 4, 1, 1,
255, 4, 1, 1
};
// Gradient palette "es_rivendell_15_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/rivendell/tn/es_rivendell_15.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_rivendell_15_gp ) {
0, 1, 14, 5,
101, 16, 36, 14,
165, 56, 68, 30,
242, 150,156, 99,
255, 150,156, 99};
DEFINE_GRADIENT_PALETTE(es_rivendell_15_gp) {
0, 1, 14, 5,
101, 16, 36, 14,
165, 56, 68, 30,
242, 150, 156, 99,
255, 150, 156, 99
};
// Gradient palette "rgi_15_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/ds/rgi/tn/rgi_15.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 36 bytes of program space.
DEFINE_GRADIENT_PALETTE( rgi_15_gp ) {
0, 4, 1, 31,
31, 55, 1, 16,
63, 197, 3, 7,
95, 59, 2, 17,
127, 6, 2, 34,
159, 39, 6, 33,
191, 112, 13, 32,
223, 56, 9, 35,
255, 22, 6, 38};
DEFINE_GRADIENT_PALETTE(rgi_15_gp) {
0, 4, 1, 31,
31, 55, 1, 16,
63, 197, 3, 7,
95, 59, 2, 17,
127, 6, 2, 34,
159, 39, 6, 33,
191, 112, 13, 32,
223, 56, 9, 35,
255, 22, 6, 38
};
// Gradient palette "retro2_16_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/ma/retro2/tn/retro2_16.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 8 bytes of program space.
DEFINE_GRADIENT_PALETTE( retro2_16_gp ) {
0, 188,135, 1,
255, 46, 7, 1};
DEFINE_GRADIENT_PALETTE(retro2_16_gp) {
0, 188, 135, 1,
255, 46, 7, 1
};
// Gradient palette "Analogous_1_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/red/tn/Analogous_1.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( Analogous_1_gp ) {
0, 3, 0,255,
63, 23, 0,255,
127, 67, 0,255,
191, 142, 0, 45,
255, 255, 0, 0};
DEFINE_GRADIENT_PALETTE(Analogous_1_gp) {
0, 3, 0, 255,
63, 23, 0, 255,
127, 67, 0, 255,
191, 142, 0, 45,
255, 255, 0, 0
};
// Gradient palette "es_pinksplash_08_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/pink_splash/tn/es_pinksplash_08.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_pinksplash_08_gp ) {
0, 126, 11,255,
127, 197, 1, 22,
175, 210,157,172,
221, 157, 3,112,
255, 157, 3,112};
DEFINE_GRADIENT_PALETTE(es_pinksplash_08_gp) {
0, 126, 11, 255,
127, 197, 1, 22,
175, 210, 157, 172,
221, 157, 3, 112,
255, 157, 3, 112
};
// Gradient palette "es_pinksplash_07_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/pink_splash/tn/es_pinksplash_07.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_pinksplash_07_gp ) {
0, 229, 1, 1,
61, 242, 4, 63,
101, 255, 12,255,
127, 249, 81,252,
153, 255, 11,235,
193, 244, 5, 68,
255, 232, 1, 5};
DEFINE_GRADIENT_PALETTE(es_pinksplash_07_gp) {
0, 229, 1, 1,
61, 242, 4, 63,
101, 255, 12, 255,
127, 249, 81, 252,
153, 255, 11, 235,
193, 244, 5, 68,
255, 232, 1, 5
};
// Gradient palette "Coral_reef_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/other/tn/Coral_reef.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 24 bytes of program space.
DEFINE_GRADIENT_PALETTE( Coral_reef_gp ) {
0, 40,199,197,
50, 10,152,155,
96, 1,111,120,
96, 43,127,162,
139, 10, 73,111,
255, 1, 34, 71};
DEFINE_GRADIENT_PALETTE(Coral_reef_gp) {
0, 40, 199, 197,
50, 10, 152, 155,
96, 1, 111, 120,
96, 43, 127, 162,
139, 10, 73, 111,
255, 1, 34, 71
};
// Gradient palette "es_ocean_breeze_068_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/ocean_breeze/tn/es_ocean_breeze_068.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 24 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_ocean_breeze_068_gp ) {
0, 100,156,153,
51, 1, 99,137,
101, 1, 68, 84,
104, 35,142,168,
178, 0, 63,117,
255, 1, 10, 10};
DEFINE_GRADIENT_PALETTE(es_ocean_breeze_068_gp) {
0, 100, 156, 153,
51, 1, 99, 137,
101, 1, 68, 84,
104, 35, 142, 168,
178, 0, 63, 117,
255, 1, 10, 10
};
// Gradient palette "es_ocean_breeze_036_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/ocean_breeze/tn/es_ocean_breeze_036.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 16 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_ocean_breeze_036_gp ) {
0, 1, 6, 7,
89, 1, 99,111,
153, 144,209,255,
255, 0, 73, 82};
DEFINE_GRADIENT_PALETTE(es_ocean_breeze_036_gp) {
0, 1, 6, 7,
89, 1, 99, 111,
153, 144, 209, 255,
255, 0, 73, 82
};
// Gradient palette "departure_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/mjf/tn/departure.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 88 bytes of program space.
DEFINE_GRADIENT_PALETTE( departure_gp ) {
0, 8, 3, 0,
42, 23, 7, 0,
63, 75, 38, 6,
84, 169, 99, 38,
106, 213,169,119,
116, 255,255,255,
138, 135,255,138,
148, 22,255, 24,
170, 0,255, 0,
191, 0,136, 0,
212, 0, 55, 0,
255, 0, 55, 0};
DEFINE_GRADIENT_PALETTE(departure_gp) {
0, 8, 3, 0,
42, 23, 7, 0,
63, 75, 38, 6,
84, 169, 99, 38,
106, 213, 169, 119,
116, 255, 255, 255,
138, 135, 255, 138,
148, 22, 255, 24,
170, 0, 255, 0,
191, 0, 136, 0,
212, 0, 55, 0,
255, 0, 55, 0
};
// Gradient palette "es_landscape_64_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/landscape/tn/es_landscape_64.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 36 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_landscape_64_gp ) {
0, 0, 0, 0,
37, 2, 25, 1,
76, 15,115, 5,
127, 79,213, 1,
128, 126,211, 47,
130, 188,209,247,
153, 144,182,205,
204, 59,117,250,
255, 1, 37,192};
DEFINE_GRADIENT_PALETTE(es_landscape_64_gp) {
0, 0, 0, 0,
37, 2, 25, 1,
76, 15, 115, 5,
127, 79, 213, 1,
128, 126, 211, 47,
130, 188, 209, 247,
153, 144, 182, 205,
204, 59, 117, 250,
255, 1, 37, 192
};
// Gradient palette "es_landscape_33_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/landscape/tn/es_landscape_33.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 24 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_landscape_33_gp ) {
0, 1, 5, 0,
19, 32, 23, 1,
38, 161, 55, 1,
63, 229,144, 1,
66, 39,142, 74,
255, 1, 4, 1};
DEFINE_GRADIENT_PALETTE(es_landscape_33_gp) {
0, 1, 5, 0,
19, 32, 23, 1,
38, 161, 55, 1,
63, 229, 144, 1,
66, 39, 142, 74,
255, 1, 4, 1
};
// Gradient palette "rainbowsherbet_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/ma/icecream/tn/rainbowsherbet.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( rainbowsherbet_gp ) {
0, 255, 33, 4,
43, 255, 68, 25,
86, 255, 7, 25,
127, 255, 82,103,
170, 255,255,242,
209, 42,255, 22,
255, 87,255, 65};
DEFINE_GRADIENT_PALETTE(rainbowsherbet_gp) {
0, 255, 33, 4,
43, 255, 68, 25,
86, 255, 7, 25,
127, 255, 82, 103,
170, 255, 255, 242,
209, 42, 255, 22,
255, 87, 255, 65
};
// Gradient palette "gr65_hult_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/hult/tn/gr65_hult.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 24 bytes of program space.
DEFINE_GRADIENT_PALETTE( gr65_hult_gp ) {
0, 247,176,247,
48, 255,136,255,
89, 220, 29,226,
160, 7, 82,178,
216, 1,124,109,
255, 1,124,109};
DEFINE_GRADIENT_PALETTE(gr65_hult_gp) {
0, 247, 176, 247,
48, 255, 136, 255,
89, 220, 29, 226,
160, 7, 82, 178,
216, 1, 124, 109,
255, 1, 124, 109
};
// Gradient palette "gr64_hult_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/hult/tn/gr64_hult.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 32 bytes of program space.
DEFINE_GRADIENT_PALETTE( gr64_hult_gp ) {
0, 1,124,109,
66, 1, 93, 79,
104, 52, 65, 1,
130, 115,127, 1,
150, 52, 65, 1,
201, 1, 86, 72,
239, 0, 55, 45,
255, 0, 55, 45};
DEFINE_GRADIENT_PALETTE(gr64_hult_gp) {
0, 1, 124, 109,
66, 1, 93, 79,
104, 52, 65, 1,
130, 115, 127, 1,
150, 52, 65, 1,
201, 1, 86, 72,
239, 0, 55, 45,
255, 0, 55, 45
};
// Gradient palette "GMT_drywet_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/gmt/tn/GMT_drywet.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( GMT_drywet_gp ) {
0, 47, 30, 2,
42, 213,147, 24,
84, 103,219, 52,
127, 3,219,207,
170, 1, 48,214,
212, 1, 1,111,
255, 1, 7, 33};
DEFINE_GRADIENT_PALETTE(GMT_drywet_gp) {
0, 47, 30, 2,
42, 213, 147, 24,
84, 103, 219, 52,
127, 3, 219, 207,
170, 1, 48, 214,
212, 1, 1, 111,
255, 1, 7, 33
};
// Gradient palette "ib15_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/ing/general/tn/ib15.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 24 bytes of program space.
DEFINE_GRADIENT_PALETTE( ib15_gp ) {
0, 113, 91,147,
72, 157, 88, 78,
89, 208, 85, 33,
107, 255, 29, 11,
141, 137, 31, 39,
255, 59, 33, 89};
DEFINE_GRADIENT_PALETTE(ib15_gp) {
0, 113, 91, 147,
72, 157, 88, 78,
89, 208, 85, 33,
107, 255, 29, 11,
141, 137, 31, 39,
255, 59, 33, 89
};
// Gradient palette "Fuschia_7_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/ds/fuschia/tn/Fuschia-7.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( Fuschia_7_gp ) {
0, 43, 3,153,
63, 100, 4,103,
127, 188, 5, 66,
191, 161, 11,115,
255, 135, 20,182};
DEFINE_GRADIENT_PALETTE(Fuschia_7_gp) {
0, 43, 3, 153,
63, 100, 4, 103,
127, 188, 5, 66,
191, 161, 11, 115,
255, 135, 20, 182
};
// Gradient palette "es_emerald_dragon_08_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/emerald_dragon/tn/es_emerald_dragon_08.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 16 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_emerald_dragon_08_gp ) {
0, 97,255, 1,
101, 47,133, 1,
178, 13, 43, 1,
255, 2, 10, 1};
DEFINE_GRADIENT_PALETTE(es_emerald_dragon_08_gp) {
0, 97, 255, 1,
101, 47, 133, 1,
178, 13, 43, 1,
255, 2, 10, 1
};
// Gradient palette "lava_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/neota/elem/tn/lava.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 52 bytes of program space.
DEFINE_GRADIENT_PALETTE( lava_gp ) {
0, 0, 0, 0,
46, 18, 0, 0,
96, 113, 0, 0,
108, 142, 3, 1,
119, 175, 17, 1,
146, 213, 44, 2,
174, 255, 82, 4,
188, 255,115, 4,
202, 255,156, 4,
218, 255,203, 4,
234, 255,255, 4,
244, 255,255, 71,
255, 255,255,255};
DEFINE_GRADIENT_PALETTE(lava_gp) {
0, 0, 0, 0,
46, 18, 0, 0,
96, 113, 0, 0,
108, 142, 3, 1,
119, 175, 17, 1,
146, 213, 44, 2,
174, 255, 82, 4,
188, 255, 115, 4,
202, 255, 156, 4,
218, 255, 203, 4,
234, 255, 255, 4,
244, 255, 255, 71,
255, 255, 255, 255
};
// Gradient palette "fire_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/neota/elem/tn/fire.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( fire_gp ) {
0, 1, 1, 0,
76, 32, 5, 0,
146, 192, 24, 0,
197, 220,105, 5,
240, 252,255, 31,
250, 252,255,111,
255, 255,255,255};
DEFINE_GRADIENT_PALETTE(fire_gp) {
0, 1, 1, 0,
76, 32, 5, 0,
146, 192, 24, 0,
197, 220, 105, 5,
240, 252, 255, 31,
250, 252, 255, 111,
255, 255, 255, 255
};
// Gradient palette "Colorfull_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/atmospheric/tn/Colorfull.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 44 bytes of program space.
DEFINE_GRADIENT_PALETTE( Colorfull_gp ) {
0, 10, 85, 5,
25, 29,109, 18,
60, 59,138, 42,
93, 83, 99, 52,
106, 110, 66, 64,
109, 123, 49, 65,
113, 139, 35, 66,
116, 192,117, 98,
124, 255,255,137,
168, 100,180,155,
255, 22,121,174};
DEFINE_GRADIENT_PALETTE(Colorfull_gp) {
0, 10, 85, 5,
25, 29, 109, 18,
60, 59, 138, 42,
93, 83, 99, 52,
106, 110, 66, 64,
109, 123, 49, 65,
113, 139, 35, 66,
116, 192, 117, 98,
124, 255, 255, 137,
168, 100, 180, 155,
255, 22, 121, 174
};
// Gradient palette "Magenta_Evening_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/atmospheric/tn/Magenta_Evening.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( Magenta_Evening_gp ) {
0, 71, 27, 39,
31, 130, 11, 51,
63, 213, 2, 64,
70, 232, 1, 66,
76, 252, 1, 69,
108, 123, 2, 51,
255, 46, 9, 35};
DEFINE_GRADIENT_PALETTE(Magenta_Evening_gp) {
0, 71, 27, 39,
31, 130, 11, 51,
63, 213, 2, 64,
70, 232, 1, 66,
76, 252, 1, 69,
108, 123, 2, 51,
255, 46, 9, 35
};
// Gradient palette "Pink_Purple_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/atmospheric/tn/Pink_Purple.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 44 bytes of program space.
DEFINE_GRADIENT_PALETTE( Pink_Purple_gp ) {
0, 19, 2, 39,
25, 26, 4, 45,
51, 33, 6, 52,
76, 68, 62,125,
102, 118,187,240,
109, 163,215,247,
114, 217,244,255,
122, 159,149,221,
149, 113, 78,188,
183, 128, 57,155,
255, 146, 40,123};
DEFINE_GRADIENT_PALETTE(Pink_Purple_gp) {
0, 19, 2, 39,
25, 26, 4, 45,
51, 33, 6, 52,
76, 68, 62, 125,
102, 118, 187, 240,
109, 163, 215, 247,
114, 217, 244, 255,
122, 159, 149, 221,
149, 113, 78, 188,
183, 128, 57, 155,
255, 146, 40, 123
};
// Gradient palette "Sunset_Real_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/atmospheric/tn/Sunset_Real.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( Sunset_Real_gp ) {
0, 120, 0, 0,
22, 179, 22, 0,
51, 255,104, 0,
85, 167, 22, 18,
135, 100, 0,103,
198, 16, 0,130,
255, 0, 0,160};
DEFINE_GRADIENT_PALETTE(Sunset_Real_gp) {
0, 120, 0, 0,
22, 179, 22, 0,
51, 255, 104, 0,
85, 167, 22, 18,
135, 100, 0, 103,
198, 16, 0, 130,
255, 0, 0, 160
};
// Gradient palette "es_autumn_19_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/autumn/tn/es_autumn_19.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 52 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_autumn_19_gp ) {
0, 26, 1, 1,
51, 67, 4, 1,
84, 118, 14, 1,
104, 137,152, 52,
112, 113, 65, 1,
122, 133,149, 59,
124, 137,152, 52,
135, 113, 65, 1,
142, 139,154, 46,
163, 113, 13, 1,
204, 55, 3, 1,
249, 17, 1, 1,
255, 17, 1, 1};
DEFINE_GRADIENT_PALETTE(es_autumn_19_gp) {
0, 26, 1, 1,
51, 67, 4, 1,
84, 118, 14, 1,
104, 137, 152, 52,
112, 113, 65, 1,
122, 133, 149, 59,
124, 137, 152, 52,
135, 113, 65, 1,
142, 139, 154, 46,
163, 113, 13, 1,
204, 55, 3, 1,
249, 17, 1, 1,
255, 17, 1, 1
};
// Gradient palette "BlacK_Blue_Magenta_White_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/basic/tn/BlacK_Blue_Magenta_White.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( BlacK_Blue_Magenta_White_gp ) {
0, 0, 0, 0,
42, 0, 0, 45,
84, 0, 0,255,
127, 42, 0,255,
170, 255, 0,255,
212, 255, 55,255,
255, 255,255,255};
DEFINE_GRADIENT_PALETTE(BlacK_Blue_Magenta_White_gp) {
0, 0, 0, 0,
42, 0, 0, 45,
84, 0, 0, 255,
127, 42, 0, 255,
170, 255, 0, 255,
212, 255, 55, 255,
255, 255, 255, 255
};
// Gradient palette "BlacK_Magenta_Red_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/basic/tn/BlacK_Magenta_Red.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( BlacK_Magenta_Red_gp ) {
0, 0, 0, 0,
63, 42, 0, 45,
127, 255, 0,255,
191, 255, 0, 45,
255, 255, 0, 0};
DEFINE_GRADIENT_PALETTE(BlacK_Magenta_Red_gp) {
0, 0, 0, 0,
63, 42, 0, 45,
127, 255, 0, 255,
191, 255, 0, 45,
255, 255, 0, 0
};
// Gradient palette "BlacK_Red_Magenta_Yellow_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/basic/tn/BlacK_Red_Magenta_Yellow.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( BlacK_Red_Magenta_Yellow_gp ) {
0, 0, 0, 0,
42, 42, 0, 0,
84, 255, 0, 0,
127, 255, 0, 45,
170, 255, 0,255,
212, 255, 55, 45,
255, 255,255, 0};
DEFINE_GRADIENT_PALETTE(BlacK_Red_Magenta_Yellow_gp) {
0, 0, 0, 0,
42, 42, 0, 0,
84, 255, 0, 0,
127, 255, 0, 45,
170, 255, 0, 255,
212, 255, 55, 45,
255, 255, 255, 0
};
// Gradient palette "Blue_Cyan_Yellow_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/basic/tn/Blue_Cyan_Yellow.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( Blue_Cyan_Yellow_gp ) {
0, 0, 0,255,
63, 0, 55,255,
127, 0,255,255,
191, 42,255, 45,
255, 255,255, 0};
DEFINE_GRADIENT_PALETTE(Blue_Cyan_Yellow_gp) {
0, 0, 0, 255,
63, 0, 55, 255,
127, 0, 255, 255,
191, 42, 255, 45,
255, 255, 255, 0
};
// Single array of defined cpt-city color palettes.
@ -514,5 +547,5 @@ const TProgmemRGBGradientPalettePtr gGradientPalettes[] = {
// Count of how many cpt-city gradients are defined:
const uint8_t gGradientPaletteCount =
sizeof( gGradientPalettes) / sizeof( TProgmemRGBGradientPalettePtr );
sizeof(gGradientPalettes) / sizeof(TProgmemRGBGradientPalettePtr);

5319
NodeRED_Flow.txt Normal file

File diff suppressed because one or more lines are too long

421
README.md
View File

@ -1,54 +1,391 @@
FastLED + ESP8266 Web Server
Nanoleaf Web Server
=========
Control an addressable LED strip with an ESP8266 via a web browser or infrared remote control.
This is a fork of [jasoncoon's esp8266 fastled webserver](https://github.com/jasoncoon/esp8266-fastled-webserver) that was adapted to control the colors of my [DIY-Nanoleaf Replica](https://www.thingiverse.com/thing:3354082).
[![Nanoleafs](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/rgb_preview2.gif?raw=true)](https://www.thingiverse.com/thing:3354082)
Hardware
--------
##### ESP8266 development board
##### ESP8266
[![Wemos D1 Mini Pro & Headers](https://ae01.alicdn.com/kf/HTB1P1KVaMsSMeJjSsphq6xuJFXah/WEMOS-D1-mini-Pro-V1-1-0-16M-bytes-external-antenna-connector-ESP8266-WIFI-Internet-of.jpg_200x200.jpg)](https://www.aliexpress.com/item/WEMOS-D1-mini-Pro-16M-bytes-external-antenna-connector-ESP8266-WIFI-Internet-of-Things-development-board/32724692514.html)
![Wemos D1 Mini Pro & Headers](https://ae01.alicdn.com/kf/HTB1QYHzJKuSBuNjy1Xcq6AYjFXau/ESP8266-ESP-12-ESP12-WeMos-D1-Mini-Modul-Wemos-D1-Mini-WiFi-Entwicklung-Bord-Micro-USB.jpg)
[Wemos D1 Mini Pro & Headers](https://www.aliexpress.com/item/WEMOS-D1-mini-Pro-16M-bytes-external-antenna-connector-ESP8266-WIFI-Internet-of-Things-development-board/32724692514.html)
[Wemos D1 mini](http://s.click.aliexpress.com/e/cBDdafPw) is recommended, but any other ESP8266 variant should work too, but it might require an additional step-down converter.
or
[![Adafruit HUZZAH ESP8266 Breakout](https://cdn-shop.adafruit.com/310x233/2471-10.jpg)](https://www.adafruit.com/products/2471)
[Adafruit HUZZAH ESP8266 Breakout](https://www.adafruit.com/products/2471)
**Addressable Led Strip**
##### Addressable LED strip
![](https://cdn.pixabay.com/photo/2017/02/27/11/36/digital-led-strip-lights-2103020_960_720.jpg)
[![Adafruit NeoPixel Ring](https://www.adafruit.com/images/145x109/1586-00.jpg)](https://www.adafruit.com/product/1586)
I have used 12 led pixels per leaf → 1m of 60 leds/m = 5 leafs
[Adafruit NeoPixel Ring]
I would recommend buying a strip with 60 leds/m or more.
Other hardware:
[WS2812b led strip](http://s.click.aliexpress.com/e/SkQFQqc), make sure you choose IP30 any other IP rating wouldn't make any sense and might not even fit.
* [3.3V to 5V Logic Level Shifter](http://www.digikey.com/product-detail/en/texas-instruments/SN74HCT245N/296-1612-5-ND/277258) (required if LEDs "glitch")
Recommended by [Adafruit NeoPixel "Best Practices"](https://learn.adafruit.com/adafruit-neopixel-uberguide/best-practices) to help protect LEDs from current onrush:
* [1000µF Capacitor](http://www.digikey.com/product-detail/en/panasonic-electronic-components/ECA-1EM102/P5156-ND/245015)
* [300 to 500 Ohm resistor](https://www.digikey.com/product-detail/en/stackpole-electronics-inc/CF14JT470R/CF14JT470RCT-ND/1830342)
Optional shield to make everything more tidy:
Other (optional) hardware:
[![Wemos D1 Mini ESP8266 LED & Level Shifter Shield](https://d3s5r33r268y59.cloudfront.net/13194/products/thumbs/2017-05-06T15:02:37.208Z-IMG_20170506_100623.jpg.114x76_q85_pad_rcrop.jpg)](https://www.tindie.com/products/jasoncoon/wemos-d1-mini-esp8266-led-and-level-shifter-shield/)
[Wemos D1 Mini ESP8266 LED & Level Shifter Shield](https://www.tindie.com/products/jasoncoon/wemos-d1-mini-esp8266-led-and-level-shifter-shield)
* [3.3V to 5V Logic Level Shifter](http://s.click.aliexpress.com/e/buDr0PT2) (required if LEDs "glitch")
Features
--------
* Turn the NeoPixel Ring on and off
* Control the colors of individual leafs
* Adjust the brightness
* Change the display pattern
* Adjust the color
* Adapted patterns to look great on the [DIY-Nanoleaf Replica](https://www.thingiverse.com/thing:3354082)
* OTA-Update support
* **Node-RED** integration :white_check_mark:
* Simple Amazon **Alexa** integration :white_check_mark:
* Custom pattern designer :white_check_mark:
* **Node-RED** webinterface to store special patterns persistant :white_check_mark:
Web App
### Upcoming Features
- **Node-RED** integration :white_check_mark:
- Simple Amazon **Alexa** integration :white_check_mark:
- Nanoleaf voice control :white_check_mark:
- Custom pattern designer :white_check_mark:
- **Node-RED** webinterface to store special patterns persistant :white_check_mark:
- Controlling multiple nanoleafs at once
- Advanced Amazon **Alexa** integration with custom skill (AWS account required, free)
> these features will be optional and require additional hardware (any linux/windows device that is in the same network)
Webinterface
--------
![Web App](webapp.png)
![Webinterface](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/interface.jpg?raw=true)
The web app is stored in SPIFFS (on-board flash memory).
Installing
-----------
The app is installed via the Arduino IDE which can be [downloaded here](https://www.arduino.cc/en/main/software). The ESP8266 boards will need to be added to the Arduino IDE which is achieved as follows. Click File > Preferences and copy and paste the URL "http://arduino.esp8266.com/stable/package_esp8266com_index.json" into the Additional Boards Manager URLs field. Click OK. Click Tools > Boards: ... > Boards Manager. Find and click on ESP8266 (using the Search function may expedite this). Click on Install. After installation, click on Close and then select your ESP8266 board from the Tools > Board: ... menu.
The app depends on the following libraries. They must either be downloaded from GitHub and placed in the Arduino 'libraries' folder, or installed as [described here](https://www.arduino.cc/en/Guide/Libraries) by using the Arduino library manager.
* [FastLED](https://github.com/FastLED/FastLED)
* [Arduino WebSockets](https://github.com/Links2004/arduinoWebSockets)
Download the app code from GitHub using the green Clone or Download button from [GitHub](https://github.com/NimmLor/esp8266-nanoleaf-webserver) and click Download ZIP. Decompress the ZIP file in your Arduino sketch folder. Rename the folder from *esp8266-nanoleaf-webserver-master* to *esp8266-nanoleaf-webserver*
The web app needs to be uploaded to the ESP8266's SPIFFS. You can do this within the Arduino IDE after installing the [Arduino ESP8266FS tool](http://esp8266.github.io/Arduino/versions/2.3.0/doc/filesystem.html#uploading-files-to-file-system). An alternative would be to install the [Visual Micro](https://www.visualmicro.com/) plugin for Visual Studio.
With ESP8266FS installed upload the web app using `ESP8266 Sketch Data Upload` command in the Arduino Tools menu.
## Configuration
The most important thing to do is to set the amount of 'leafs' and the amount of led pixels that one 'leaf' contains.
For instance I use 12 leafs (triangles) with a total of 12 pixels in one leaf (=4 leds in each corner of the triangle).
```c++
#define LEAFCOUNT 12
#define PIXELS_PER_LEAF 12
```
Next enter the pin where the *Data* line is connected to, in my case it's pin D4 (you can either write D4 or 2).
`#define DATA_PIN D4`
Another **important** step is to create the **Secrets.h** file. Create a new tab (**ctrl**+**shift**+**n**) and name it *Secrets.h*, this file contains your WIFI credentials and it's structure must look like this:
``````c++
// AP mode password
const char WiFiAPPSK[] = "WIFI_NAME_IF_IN_AP_MODE";
// Wi-Fi network to connect to (if not in AP mode)
char* ssid = "YOUR_WIFI_NAME";
char* password = "YOUR_WIFI_PASSWORD";
``````
If colors appear to be swapped you should change the color order. For me, red and green was swapped so i had to change the color order from *RGB* to *GRB*.
You should also set the milli-amps of your power supply to prevent power overloading. I am using a 3A 5V psu so i defined 3000mA.
`#define MILLI_AMPS 3000`
## Circuit
### Without Logic-Level Converter
![circuit without Logic level converter](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/circuit.jpg?raw=true)
### With Logic-Level-Converter (required if leds 'glitch')
![circuit with logic level converter](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/circuit_logic_level_Steckplatine.jpg?raw=true)
# Node-RED & Alexa integration Setup
## Features
### **Amazon Alexa Integration** (optional)
It works with any language that is supported by Alexa and can be easily expanded to support more activities or patterns. How you want to call them (Nanoleaf, Nanoleafs, Nano, Triangles) must be set in the setup of the devices.
#### **Commands**:
- Turn on/off
- Control Brightness
- Control Pattern Speed
- Set Color
- Set into Rainbow mode
- Enable Autoplay and set Duration
- Activate custom activities
> *Alexa, turn Nanoleafs **on/off***
> *Alexa, set Nanoleafs 70%*
> Alexa, dim Nanoleafs
> *Alexa, Nanoleaf speed 20%*
> *Alexa, set Nanoleafs pink*
> *Alexa, turn Nanoleaf rainbow on*
> *Alexa, turn Nanoleaf Autoplay on*
> *Alexa, set Nanoleaf Autoplay 40*
>
> Alexa, Nanoleaf Default
> Alexa, Nanoleaf Mode 1
> Alexa, Nanoleaf Mode 2
> Alexa, Nanoleaf Mode 3
### Node-RED GUI
The Node-RED GUI is an addition to the regular UI that is running on the Wemos D1 mini. It allows to create and save custom patterns and also control all regular parameters same as the ESP8266 webserver. It can be accessed by any device.
![full](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/full.png?raw=true)
#### Nanoleaf Designer
In the Node-RED GUI you can easily create your nanoleaf setup by using the *Nanoleaf Designer*. It's easy to use and allows almost any design that is possible. But it might have still some minor bugs.
![nanoleaf_designer](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/nanoleaf_designer.png?raw=true)
![nanoleaf_designer_2](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/nanoleaf_designer_2.png?raw=true)
#### Nanoleaf Custom Pattern Designer
With the *Nanoleaf Custom Pattern Designer* you can create custom patterns with effects. Currently the individual leafs can be set to *Static* mode and *Breathe* mode that allows to set a phase shift and lets the leafs breathe. Flow-mode follows in the next update.
![pattern_designer](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/pattern_designer.png?raw=true)
![pattern_designer_2](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/pattern_designer_2.png?raw=true)
![patternlist](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/patternlist.png?raw=true)
## What you will need
- Any device that runs Node-RED, examples would be:
- (recommended) [Raspberry Pi](https://www.amazon.de/gp/product/B01CD5VC92?ie=UTF8&tag=surrbradl08-21&camp=1638&linkCode=xm2&creativeASIN=B01CD5VC92)
- Any Linux machine
- (instructions are provided for linux) Any Windows machine
- Any Amazon Alexa device for Alexa integration, works on Android and IOS too (**OPTIONAL**)
## Setup
#### 1. Install Node-RED
```bash
bash <(curl -sL https://raw.githubusercontent.com/node-red/raspbian-deb-package/master/resources/update-nodejs-and-nodered)
```
#### 2. Install npm - this might be already installed
```bash
sudo apt-get install nodejs npm -y
```
#### 3. Install dashboard, alexa-home-skill, color-convert, config
```bash
cd $HOME/.node-red
npm install node-red-dashboard
```
- if you get an error try: `npm install --unsafe-perm node-red-dashboard`
```bash
npm install node-red-contrib-alexa-home-skill
npm install node-red-contrib-color-convert
npm install node-red-contrib-config
```
#### 4. Setup a static IP-Address for your Raspberry Pi (optional)
- (recommended) Setup a static ip on your router
- [or on your Raspberry Pi](http://www.circuitbasics.com/how-to-set-up-a-static-ip-on-the-raspberry-pi/)
#### 6. Run Node-RED
To start Node-RED type into the shell:
```bash
sudo node-red-start
```
Connect to the GUI by typing the following line into your browser:
- http://IP-ADDRESS:1880
#### 3. Import the flow
- Click on the 3 dashes in the top right corner → import → clipboard
![import](D:\OneDrive\3DPrinting\Thingiverse\Node-Red-Leafs\Noderedpart\images\import.png?raw=true)
#### Configure the IP-Address of the Wemos D1 mini
Edit the Nanoleaf-Config node to set the IP-Address.
![config_1](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/config_1.png?raw=true)
![config_2](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/config_2.png?raw=true)
## Amazon Alexa setup
The Alexa integration uses the *Node-RED Alexa Home Skill Bridge* to redirect the commands from alexa to Node-RED.
### 1. Create a new Bridge account
Head to https://alexa-node-red.bm.hardill.me.uk/newuser and create a new account.
Afterwards login into your account.
### 2. Create the Devices
You have to create devices that are called by Alexa.
#### 2.1 Main Nanoleaf Device
First create the devices that control a few devices that are used to turn on/off the nanoleafs and controls the brightness. I've called them "Nanoleafs", "Nanoleaf", "Nano" and "Triangles", but a single one would be enough too.
Click the **Add Device** button and choose. Repeat this step for all your names.
![device_1](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/device_1.png?raw=true)
![device_2](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/device_2.png?raw=true)
#### 2.2 Autoplay control Device (optional)
To control the autoplay functionality, create a device with **On, Off, %, +%, -%, LIGHT**.
#### 2.3 Speed control Device (optional)
To control the speed of the animations, create a device with **%, +%, -%**.
#### 2.4 Activities (optional)
Now create activities by clicking *Add Device* and selecting **On, Off, ACTIVITY**.
I've created one to set the *Rainbow* pattern, one for my default settings and Nanoleaf Mode 1-3 for some custom settings.
![device_3](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/device_3.png?raw=true)
![device_4](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/device_4.png?raw=true)
### 3. Activating the Alexa skill
Open the app on your phone or head to https://alexa.amazon.de and click on **Skills**.
Search for **Node-RED** and activate the skill. Afterwards you are prompted to login into your account that you have created the devices beforehand.
![1551006980428](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/1551006980428.png?raw=true)
### 4. Add a new Alexa-Home-Skill configuration
Click on any Alexa node in the flow, and click *Add new alexa-home-configuration*. Afterwards hit the refresh button next to the devices list.
![conf_1](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/conf_1.png?raw=true)
### 5. Select the devices
Click the alexa skill nodes in the flow and select the corresponding devices. **Delete all unused alexa nodes**.
For me, it looked like this:
![device_config](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/NodeRED_UI/device_config.png?raw=true)
### 6. Discover the Smart-Home Devices
Speak to Alexa and say to her: **Alexa, discover devices**. (Just say it in english, it works on every device)
If everything worked correctly she should tell you after around 30 seconds that she has found new devices.
Technical information
-----------------
Patterns are requested by the app from the ESP8266, so as new patterns are added, they're automatically listed in the app.
@ -58,44 +395,6 @@ The web app is a single page app that uses [jQuery](https://jquery.com) and [Boo
The only drawback to SPIFFS that I've found so far is uploading the files can be extremely slow, requiring several minutes, sometimes regardless of how large the files are. It can be so slow that I've been just developing the web app and debugging locally on my desktop (with a hard-coded IP for the ESP8266), before uploading to SPIFFS and testing on the ESP8266.
Installing
-----------
The app is installed via the Arduino IDE which can be [downloaded here](https://www.arduino.cc/en/main/software). The ESP8266 boards will need to be added to the Arduino IDE which is achieved as follows. Click File > Preferences and copy and paste the URL "http://arduino.esp8266.com/stable/package_esp8266com_index.json" into the Additional Boards Manager URLs field. Click OK. Click Tools > Boards: ... > Boards Manager. Find and click on ESP8266 (using the Search function may expedite this). Click on Install. After installation, click on Close and then select your ESP8266 board from the Tools > Board: ... menu.
The app depends on the following libraries. They must either be downloaded from GitHub and placed in the Arduino 'libraries' folder, or installed as [described here](https://www.arduino.cc/en/Guide/Libraries) by using the Arduino library manager.
* [FastLED](https://github.com/FastLED/FastLED)
* [IRremoteESP8266](https://github.com/sebastienwarin/IRremoteESP8266)
* [Arduino WebSockets](https://github.com/Links2004/arduinoWebSockets)
Download the app code from GitHub using the green Clone or Download button from [the GitHub project main page](https://github.com/jasoncoon/esp8266-fastled-webserver) and click Download ZIP. Decompress the ZIP file in your Arduino sketch folder.
The web app needs to be uploaded to the ESP8266's SPIFFS. You can do this within the Arduino IDE after installing the [Arduino ESP8266FS tool](http://esp8266.github.io/Arduino/versions/2.3.0/doc/filesystem.html#uploading-files-to-file-system).
With ESP8266FS installed upload the web app using `ESP8266 Sketch Data Upload` command in the Arduino Tools menu.
Then enter your wi-fi network SSID and password in the .ino file, and upload the sketch using the Upload button.
Compression
-----------
The web app files can be gzip compressed before uploading to SPIFFS by running the following command:
`gzip -r data/`
The ESP8266WebServer will automatically serve any .gz file. The file index.htm.gz will get served as index.htm, with the content-encoding header set to gzip, so the browser knows to decompress it. The ESP8266WebServer doesn't seem to like the Glyphicon fonts gzipped, though, so I decompress them with this command:
`gunzip -r data/fonts/`
REST Web services
-----------------
The firmware implements basic [RESTful web services](https://en.wikipedia.org/wiki/Representational_state_transfer) using the ESP8266WebServer library. Current values are requested with HTTP GETs, and values are set with POSTs using query string parameters. It can run in connected or standalone access point modes.
Infrared Remote Control
-----------------------
Control via infrared remote control is also supported, via the [ESP8266 port of the IRremote library](https://github.com/sebastienwarin/IRremoteESP8266).
[Adafruit NeoPixel Ring]:https://www.adafruit.com/product/1586
[Adafruit HUZZAH ESP8266 Breakout]:https://www.adafruit.com/products/2471

5
Secrets.h Normal file
View File

@ -0,0 +1,5 @@
const char WiFiAPPSK[] = "your-password";
// Wi-Fi network to connect to (if not in AP mode)
char* ssid = "WLAN23";
char* password = "57erChevy";

View File

@ -99,26 +99,27 @@ CRGBPalette16 twinkleFoxPalette;
// / \
//
uint8_t attackDecayWave8( uint8_t i)
uint8_t attackDecayWave8(uint8_t i)
{
if( i < 86) {
if (i < 86) {
return i * 3;
} else {
}
else {
i -= 86;
return 255 - (i + (i/2));
return 255 - (i + (i / 2));
}
}
// This function takes a pixel, and if its in the 'fading down'
// part of the cycle, it adjusts the color a little bit like the
// way that incandescent bulbs fade toward 'red' as they dim.
void coolLikeIncandescent( CRGB& c, uint8_t phase)
void coolLikeIncandescent(CRGB& c, uint8_t phase)
{
if( phase < 128) return;
if (phase < 128) return;
uint8_t cooling = (phase - 128) >> 4;
c.g = qsub8( c.g, cooling);
c.b = qsub8( c.b, cooling * 2);
c.g = qsub8(c.g, cooling);
c.b = qsub8(c.b, cooling * 2);
}
// This function takes a time in pseudo-milliseconds,
@ -130,28 +131,29 @@ void coolLikeIncandescent( CRGB& c, uint8_t phase)
// of one cycle of the brightness wave function.
// The 'high digits' are also used to determine whether this pixel
// should light at all during this cycle, based on the twinkleDensity.
CRGB computeOneTwinkle( uint32_t ms, uint8_t salt)
CRGB computeOneTwinkle(uint32_t ms, uint8_t salt)
{
uint16_t ticks = ms >> (8-twinkleSpeed);
uint16_t ticks = ms >> (8 - twinkleSpeed);
uint8_t fastcycle8 = ticks;
uint16_t slowcycle16 = (ticks >> 8) + salt;
slowcycle16 += sin8( slowcycle16);
slowcycle16 = (slowcycle16 * 2053) + 1384;
slowcycle16 += sin8(slowcycle16);
slowcycle16 = (slowcycle16 * 2053) + 1384;
uint8_t slowcycle8 = (slowcycle16 & 0xFF) + (slowcycle16 >> 8);
uint8_t bright = 0;
if( ((slowcycle8 & 0x0E)/2) < twinkleDensity) {
bright = attackDecayWave8( fastcycle8);
if (((slowcycle8 & 0x0E) / 2) < twinkleDensity) {
bright = attackDecayWave8(fastcycle8);
}
uint8_t hue = slowcycle8 - salt;
CRGB c;
if( bright > 0) {
c = ColorFromPalette( twinkleFoxPalette, hue, bright, NOBLEND);
if( COOL_LIKE_INCANDESCENT == 1 ) {
coolLikeIncandescent( c, fastcycle8);
if (bright > 0) {
c = ColorFromPalette(twinkleFoxPalette, hue, bright, NOBLEND);
if (COOL_LIKE_INCANDESCENT == 1) {
coolLikeIncandescent(c, fastcycle8);
}
} else {
}
else {
c = CRGB::Black;
}
return c;
@ -177,61 +179,148 @@ void drawTwinkles()
// the current palette are identical, then a deeply faded version of
// that color is used for the background color
CRGB bg;
if( (AUTO_SELECT_BACKGROUND_COLOR == 1) &&
(twinkleFoxPalette[0] == twinkleFoxPalette[1] )) {
if ((AUTO_SELECT_BACKGROUND_COLOR == 1) &&
(twinkleFoxPalette[0] == twinkleFoxPalette[1])) {
bg = twinkleFoxPalette[0];
uint8_t bglight = bg.getAverageLight();
if( bglight > 64) {
bg.nscale8_video( 16); // very bright, so scale to 1/16th
} else if( bglight > 16) {
bg.nscale8_video( 64); // not that bright, so scale to 1/4th
} else {
bg.nscale8_video( 86); // dim, scale to 1/3rd.
if (bglight > 64) {
bg.nscale8_video(16); // very bright, so scale to 1/16th
}
} else {
else if (bglight > 16) {
bg.nscale8_video(64); // not that bright, so scale to 1/4th
}
else {
bg.nscale8_video(86); // dim, scale to 1/3rd.
}
}
else {
bg = gBackgroundColor; // just use the explicitly defined background color
}
uint8_t backgroundBrightness = bg.getAverageLight();
for(uint8_t i = 0; i < NUM_LEDS; i++) {
CRGB& pixel = leds[i];
for (uint16_t i = 0; i < LEAFCOUNT; i++) {
CRGB& pixel = leds[i*PIXELS_PER_LEAF];
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
uint16_t myclockoffset16= PRNG16; // use that number as clock offset
uint16_t myclockoffset16 = PRNG16; // use that number as clock offset
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
// use that number as clock speed adjustment factor (in 8ths, from 8/8ths to 23/8ths)
uint8_t myspeedmultiplierQ5_3 = ((((PRNG16 & 0xFF)>>4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
uint8_t myspeedmultiplierQ5_3 = ((((PRNG16 & 0xFF) >> 4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
uint32_t myclock30 = (uint32_t)((clock32 * myspeedmultiplierQ5_3) >> 3) + myclockoffset16;
uint8_t myunique8 = PRNG16 >> 8; // get 'salt' value for this pixel
// We now have the adjusted 'clock' for this pixel, now we call
// the function that computes what color the pixel should be based
// on the "brightness = f( time )" idea.
CRGB c = computeOneTwinkle( myclock30, myunique8);
CRGB c = computeOneTwinkle(myclock30, myunique8);
uint8_t cbright = c.getAverageLight();
int16_t deltabright = cbright - backgroundBrightness;
if( deltabright >= 32 || (!bg)) {
if (deltabright >= 32 || (!bg)) {
// If the new pixel is significantly brighter than the background color,
// use the new color.
fill_solid(leds + i * PIXELS_PER_LEAF, PIXELS_PER_LEAF, c);
//Serial.printf("rgb: %d, %d, %d\n", c.r,c.g,c.b);
}
else if (deltabright > 0) {
// If the new pixel is just slightly brighter than the background color,
// mix a blend of the new color and the background color
fill_solid(leds + i * PIXELS_PER_LEAF, PIXELS_PER_LEAF, blend(bg, c, deltabright * 8));
//Serial.println("rgb:"+ blend(bg, c, deltabright * 8));
}
else {
// if the new pixel is not at all brighter than the background color,
// just use the background color.
fill_solid(leds + i * PIXELS_PER_LEAF, PIXELS_PER_LEAF, bg);
//Serial.println("rgb:" + bg);
}
}
}
/////// #############################BACKUP####################################
/*
// This function loops over each pixel, calculates the
// adjusted 'clock' that this pixel should use, and calls
// "CalculateOneTwinkle" on each pixel. It then displays
// either the twinkle color of the background color,
// whichever is brighter.
void drawTwinkles()
{
// "PRNG16" is the pseudorandom number generator
// It MUST be reset to the same starting value each time
// this function is called, so that the sequence of 'random'
// numbers that it generates is (paradoxically) stable.
uint16_t PRNG16 = 11337;
uint32_t clock32 = millis();
// Set up the background color, "bg".
// if AUTO_SELECT_BACKGROUND_COLOR == 1, and the first two colors of
// the current palette are identical, then a deeply faded version of
// that color is used for the background color
CRGB bg;
if ((AUTO_SELECT_BACKGROUND_COLOR == 1) &&
(twinkleFoxPalette[0] == twinkleFoxPalette[1])) {
bg = twinkleFoxPalette[0];
uint8_t bglight = bg.getAverageLight();
if (bglight > 64) {
bg.nscale8_video(16); // very bright, so scale to 1/16th
}
else if (bglight > 16) {
bg.nscale8_video(64); // not that bright, so scale to 1/4th
}
else {
bg.nscale8_video(86); // dim, scale to 1/3rd.
}
}
else {
bg = gBackgroundColor; // just use the explicitly defined background color
}
uint8_t backgroundBrightness = bg.getAverageLight();
for (uint16_t i = 0; i < NUM_LEDS; i++) {
CRGB& pixel = leds[i];
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
uint16_t myclockoffset16 = PRNG16; // use that number as clock offset
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
// use that number as clock speed adjustment factor (in 8ths, from 8/8ths to 23/8ths)
uint8_t myspeedmultiplierQ5_3 = ((((PRNG16 & 0xFF) >> 4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
uint32_t myclock30 = (uint32_t)((clock32 * myspeedmultiplierQ5_3) >> 3) + myclockoffset16;
uint8_t myunique8 = PRNG16 >> 8; // get 'salt' value for this pixel
// We now have the adjusted 'clock' for this pixel, now we call
// the function that computes what color the pixel should be based
// on the "brightness = f( time )" idea.
CRGB c = computeOneTwinkle(myclock30, myunique8);
uint8_t cbright = c.getAverageLight();
int16_t deltabright = cbright - backgroundBrightness;
if (deltabright >= 32 || (!bg)) {
// If the new pixel is significantly brighter than the background color,
// use the new color.
pixel = c;
} else if( deltabright > 0 ) {
}
else if (deltabright > 0) {
// If the new pixel is just slightly brighter than the background color,
// mix a blend of the new color and the background color
pixel = blend( bg, c, deltabright * 8);
} else {
pixel = blend(bg, c, deltabright * 8);
}
else {
// if the new pixel is not at all brighter than the background color,
// just use the background color.
pixel = bg;
}
}
}
*/
// A mostly red palette with green accents and white trim.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedGreenWhite_p FL_PROGMEM =
{ CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
{ CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray,
CRGB::Green, CRGB::Green, CRGB::Green, CRGB::Green };
@ -240,7 +329,7 @@ const TProgmemRGBPalette16 RedGreenWhite_p FL_PROGMEM =
#define Holly_Green 0x00580c
#define Holly_Red 0xB00402
const TProgmemRGBPalette16 Holly_p FL_PROGMEM =
{ Holly_Green, Holly_Green, Holly_Green, Holly_Green,
{ Holly_Green, Holly_Green, Holly_Green, Holly_Green,
Holly_Green, Holly_Green, Holly_Green, Holly_Green,
Holly_Green, Holly_Green, Holly_Green, Holly_Green,
Holly_Green, Holly_Green, Holly_Green, Holly_Red
@ -249,7 +338,7 @@ const TProgmemRGBPalette16 Holly_p FL_PROGMEM =
// A red and white striped palette
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedWhite_p FL_PROGMEM =
{ CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray,
{ CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray,
CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray,
CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray,
CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray };
@ -257,7 +346,7 @@ const TProgmemRGBPalette16 RedWhite_p FL_PROGMEM =
// A mostly blue palette with white accents.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 BlueWhite_p FL_PROGMEM =
{ CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
{ CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
CRGB::Blue, CRGB::Gray, CRGB::Gray, CRGB::Gray };
@ -266,14 +355,14 @@ const TProgmemRGBPalette16 BlueWhite_p FL_PROGMEM =
#define HALFFAIRY ((CRGB::FairyLight & 0xFEFEFE) / 2)
#define QUARTERFAIRY ((CRGB::FairyLight & 0xFCFCFC) / 4)
const TProgmemRGBPalette16 FairyLight_p FL_PROGMEM =
{ CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight,
{ CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight,
HALFFAIRY, HALFFAIRY, CRGB::FairyLight, CRGB::FairyLight,
QUARTERFAIRY, QUARTERFAIRY, CRGB::FairyLight, CRGB::FairyLight,
CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight };
// A palette of soft snowflakes with the occasional bright one
const TProgmemRGBPalette16 Snow_p FL_PROGMEM =
{ 0x304048, 0x304048, 0x304048, 0x304048,
{ 0x304048, 0x304048, 0x304048, 0x304048,
0x304048, 0x304048, 0x304048, 0x304048,
0x304048, 0x304048, 0x304048, 0x304048,
0x304048, 0x304048, 0x304048, 0xE0F0FF };
@ -286,7 +375,7 @@ const TProgmemRGBPalette16 Snow_p FL_PROGMEM =
#define C9_Blue 0x070758
#define C9_White 0x606820
const TProgmemRGBPalette16 RetroC9_p FL_PROGMEM =
{ C9_Red, C9_Orange, C9_Red, C9_Orange,
{ C9_Red, C9_Orange, C9_Red, C9_Orange,
C9_Orange, C9_Red, C9_Orange, C9_Red,
C9_Green, C9_Green, C9_Green, C9_Green,
C9_Blue, C9_Blue, C9_Blue,

View File

@ -7,17 +7,17 @@
enum { GETTING_DARKER = 0, GETTING_BRIGHTER = 1 };
CRGB makeBrighter( const CRGB& color, fract8 howMuchBrighter)
CRGB makeBrighter(const CRGB& color, fract8 howMuchBrighter)
{
CRGB incrementalColor = color;
incrementalColor.nscale8( howMuchBrighter);
incrementalColor.nscale8(howMuchBrighter);
return color + incrementalColor;
}
CRGB makeDarker( const CRGB& color, fract8 howMuchDarker)
CRGB makeDarker(const CRGB& color, fract8 howMuchDarker)
{
CRGB newcolor = color;
newcolor.nscale8( 255 - howMuchDarker);
newcolor.nscale8(255 - howMuchDarker);
return newcolor;
}
@ -26,9 +26,9 @@ CRGB makeDarker( const CRGB& color, fract8 howMuchDarker)
// per pixel. This requires a bunch of bit wrangling,
// but conserves precious RAM. The cost is a few
// cycles and about 100 bytes of flash program memory.
uint8_t directionFlags[ (NUM_LEDS + 7) / 8];
uint8_t directionFlags[(NUM_LEDS + 7) / 8];
bool getPixelDirection( uint16_t i)
bool getPixelDirection(uint16_t i)
{
uint16_t index = i / 8;
uint8_t bitNum = i & 0x07;
@ -37,7 +37,7 @@ bool getPixelDirection( uint16_t i)
return (directionFlags[index] & andMask) != 0;
}
void setPixelDirection( uint16_t i, bool dir)
void setPixelDirection(uint16_t i, bool dir)
{
uint16_t index = i / 8;
uint8_t bitNum = i & 0x07;
@ -45,25 +45,26 @@ void setPixelDirection( uint16_t i, bool dir)
uint8_t orMask = 1 << bitNum;
uint8_t andMask = 255 - orMask;
uint8_t value = directionFlags[index] & andMask;
if ( dir ) {
if (dir) {
value += orMask;
}
directionFlags[index] = value;
}
void brightenOrDarkenEachPixel( fract8 fadeUpAmount, fract8 fadeDownAmount)
void brightenOrDarkenEachPixel(fract8 fadeUpAmount, fract8 fadeDownAmount)
{
for ( uint16_t i = 0; i < NUM_LEDS; i++) {
if ( getPixelDirection(i) == GETTING_DARKER) {
for (uint16_t i = 0; i < LEAFCOUNT; i++) {
if (getPixelDirection(i*PIXELS_PER_LEAF) == GETTING_DARKER) {
// This pixel is getting darker
leds[i] = makeDarker( leds[i], fadeDownAmount);
} else {
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)leds[i*PIXELS_PER_LEAF + i2] = makeDarker(leds[i*PIXELS_PER_LEAF + i2], fadeDownAmount);
}
else {
// This pixel is getting brighter
leds[i] = makeBrighter( leds[i], fadeUpAmount);
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)leds[i*PIXELS_PER_LEAF + i2] = makeBrighter(leds[i*PIXELS_PER_LEAF + i2], fadeUpAmount);
// now check to see if we've maxxed out the brightness
if ( leds[i].r == 255 || leds[i].g == 255 || leds[i].b == 255) {
if (leds[i*PIXELS_PER_LEAF].r == 255 || leds[i*PIXELS_PER_LEAF].g == 255 || leds[i*PIXELS_PER_LEAF].b == 255) {
// if so, turn around and start getting darker
setPixelDirection(i, GETTING_DARKER);
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)setPixelDirection(i*PIXELS_PER_LEAF + i2, GETTING_DARKER);
}
}
}
@ -75,14 +76,18 @@ void colortwinkles()
{
// Make each pixel brighter or darker, depending on
// its 'direction' flag.
brightenOrDarkenEachPixel( FADE_IN_SPEED, FADE_OUT_SPEED);
brightenOrDarkenEachPixel(FADE_IN_SPEED, FADE_OUT_SPEED);
// Now consider adding a new random twinkle
if ( random8() < DENSITY ) {
int pos = random16(NUM_LEDS);
if ( !leds[pos]) {
leds[pos] = ColorFromPalette( gCurrentPalette, random8(), STARTING_BRIGHTNESS, NOBLEND);
setPixelDirection(pos, GETTING_BRIGHTER);
if (random8() < DENSITY) {
int pos = random16(LEAFCOUNT);
if (!leds[pos]) {
uint8_t rdo = random8();
for (int i = 0; i < PIXELS_PER_LEAF; i++)
{
leds[pos*PIXELS_PER_LEAF + i] = ColorFromPalette(gCurrentPalette, rdo, STARTING_BRIGHTNESS, NOBLEND);
setPixelDirection(pos*PIXELS_PER_LEAF + i, GETTING_BRIGHTER);
}
}
}
}
@ -104,7 +109,7 @@ void snowTwinkles()
{
CRGB w(85, 85, 85), W(CRGB::White);
gCurrentPalette = CRGBPalette16( W, W, W, W, w, w, w, w, w, w, w, w, w, w, w, w );
gCurrentPalette = CRGBPalette16(W, W, W, W, w, w, w, w, w, w, w, w, w, w, w, w);
colortwinkles();
}
@ -112,7 +117,7 @@ void incandescentTwinkles()
{
CRGB l(0xE1A024);
gCurrentPalette = CRGBPalette16( l, l, l, l, l, l, l, l, l, l, l, l, l, l, l, l );
gCurrentPalette = CRGBPalette16(l, l, l, l, l, l, l, l, l, l, l, l, l, l, l, l);
colortwinkles();
}

186
WiFi.h
View File

@ -1,186 +0,0 @@
//#include <DNSServer.h>
//DNSServer dnsServer;
//const byte DNS_PORT = 53;
// bool apMode = false;
// AP mode password
const char WiFiAPPSK[] = "";
// Wi-Fi network to connect to (if not in AP mode)
char* ssid = "";
char* password = "";
#define HOSTNAME "ESP8266-" ///< Hostname. The initializeWiFi function adds the Chip ID at the end.
#define DEBUG_WIFI 1
unsigned long futureTimeout = 0;
uint16_t connectionTimeout = 20000;
template <typename Generic>
void debugPrintln(Generic text) {
if (DEBUG_WIFI) {
Serial.print("*WiFi: ");
Serial.println(text);
}
}
void startAp() {
// WiFi.disconnect();
// apMode = true;
// WiFi.mode(WIFI_AP_STA);
// debugPrintln("SET AP STA");
String AP_NameString = "ESP8266-";
AP_NameString += String(ESP.getChipId(), HEX);
char AP_NameChar[AP_NameString.length() + 1];
memset(AP_NameChar, 0, AP_NameString.length() + 1);
for (int i = 0; i < AP_NameString.length(); i++)
AP_NameChar[i] = AP_NameString.charAt(i);
debugPrintln("Starting soft AP");
if (WiFiAPPSK != NULL) {
debugPrintln(WiFi.softAP(AP_NameChar, WiFiAPPSK) ? "ready" : "failed");
} else {
debugPrintln(WiFi.softAP(AP_NameChar) ? "ready" : "failed");
}
debugPrintln("Connect to Wi-Fi access point: ");
debugPrintln(AP_NameChar);
delay(500); // Without delay I've seen the IP address blank
debugPrintln("AP IP address: ");
debugPrintln(WiFi.softAPIP());
// dnsServer.setErrorReplyCode(DNSReplyCode::NoError);
// dnsServer.start(DNS_PORT, "*", WiFi.softAPIP());
}
String getWiFiJson() {
String hostname = String(HOSTNAME);
hostname += String(ESP.getChipId(), HEX);
String json = "{";
json += "\"status\":\"" + String(WiFi.status()) + "\"";
json += ",\"localIP\":\"" + WiFi.localIP().toString() + "\"";
json += ",\"softAPIP\":\"" + WiFi.softAPIP().toString() + "\"";
json += ",\"hostname\":\"" + hostname + "\"";
json += ",\"ssid\":\"" + WiFi.SSID() + "\"";
json += ",\"rssi\":\"" + String(WiFi.RSSI()) + "\"";
// json += ",\"networks\":[";
// byte ssidCount = WiFi.scanNetworks();
// for (byte i = 0; i < ssidCount; i++) {
// if (i > 0)
// json += ",";
//
// json += "{\"name\":\"" + WiFi.SSID(i) + "\",\"rssi\":\"" + String(WiFi.RSSI(i)) + "\"}";
// }
//
// json += "]";
json += "}";
return json;
}
void initializeWiFi() {
WiFi.mode(WIFI_AP_STA);
// Set Hostname.
String hostname = String(HOSTNAME);
hostname += String(ESP.getChipId(), HEX);
WiFi.hostname(hostname);
// Print hostname.
Serial.println("Hostname: " + hostname);
char hostnameChar[hostname.length() + 1];
memset(hostnameChar, 0, hostname.length() + 1);
for (uint8_t i = 0; i < hostname.length(); i++)
hostnameChar[i] = hostname.charAt(i);
// MDNS.begin(hostnameChar);
// Add service to MDNS-SD
// MDNS.addService("http", "tcp", 80);
// attempt to connect; should it fail, fall back to AP mode
// WiFi.mode(WIFI_STA);
String stored_ssid = WiFi.SSID();
if (stored_ssid != NULL && stored_ssid != "") {
debugPrintln("Connecting to stored SSID:");
debugPrintln(stored_ssid);
WiFi.begin();
} else {
debugPrintln("No stored SSID");
}
startAp();
webServer.on("/wifi", HTTP_POST, []() {
String ssid = webServer.arg("ssid");
String password = webServer.arg("password");
// String mode = webServer.arg("mode");
char ssidChars[50];
ssid.toCharArray(ssidChars, 50);
char passwordChars[50];
password.toCharArray(passwordChars, 50);
debugPrintln("Connecting to new SSID:");
debugPrintln(ssid);
// dnsServer.stop();
// WiFi.softAPdisconnect(true);
// apMode = false;
// WiFi.mode(WIFI_STA);
WiFi.begin(ssidChars, passwordChars);
// futureTimeout = millis() + connectionTimeout;
webServer.sendHeader("Location", "/wifi.htm");
webServer.send(303);
});
webServer.on("/wifi", HTTP_GET, []() {
String json = getWiFiJson();
webServer.send(200, "application/json", json);
});
}
void checkWiFi() {
// if (WiFi.status() == WL_CONNECTED) {
// debugPrintln("connected");
// futureTimeout = millis() + connectionTimeout;
// return;
// }
//
// if (apMode) {
// debugPrintln("Already running in AP mode.");
// return;
// }
//
// // time to give up on the stored network and switch to ap mode?
// if (futureTimeout != 0 && millis() < futureTimeout) {
// return;
// }
//
// debugPrintln("Switching to AP mode, timeout elapsed: ");
// debugPrintln(connectionTimeout);
//
// startApMode();
}

View File

@ -107,8 +107,38 @@
</div>
</div>
<div id="booleanTemplate" class="form-group">
<label class="col-sm-2 control-label"></label>
<div class="col-sm-10">
<div class="btn-group" role="group">
<button type="button" class="btn btn-default" id="btnOn">On</button>
<button type="button" class="btn btn-default" id="btnOff">Off</button>
</div>
</div>
</div>
<div id="selectTemplate" class="form-group">
<label class="col-sm-2 control-label"></label>
<div class="col-sm-8">
<select class="form-control"><select>
</div>
<div class="col-sm-2">
<div class="btn-group" role="group" aria-label="...">
<button type="button" class="btn btn-default btn-previous"
aria-label="Previous" title="Previous">
<span class="glyphicon glyphicon-chevron-left"></span>
</button>
<button type="button" class="btn btn-default btn-next"
aria-label="Next" title="Next">
<span class="glyphicon glyphicon-chevron-right"></span>
</button>
</div>
</div>
</div>
<div id="colorPaletteTemplate" class="form-group">
<label class="col-sm-2 control-label color-label"></label>
<div class="col-sm-10">
<div class="btn-group btn-group-justified" role="group">
<div class="btn-group" role="group">

View File

@ -50,6 +50,7 @@
<!-- request js from the ESP8266 web server -->
<script src="js/jquery-3.1.1.min.js"></script>
<script src="js/bootstrap.min.js"></script>
<script src="js/r-websocket.min.js"></script>
<script src="js/simple.js"></script>

BIN
gallery/DSC_8613.JPG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.1 MiB

BIN
gallery/DSC_8614.JPG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 MiB

BIN
gallery/DSC_8615.JPG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.8 MiB

BIN
gallery/DSC_8618.JPG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 MiB

BIN
gallery/DSC_8621.JPG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.5 MiB

BIN
gallery/DSC_8622.JPG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 MiB

BIN
gallery/DSC_8623.JPG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 MiB

BIN
gallery/DSC_8624.JPG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 130 KiB

BIN
gallery/NodeRED_UI/full.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 147 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

BIN
gallery/NodeRED_UI/main.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

BIN
gallery/circuit.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 236 KiB

BIN
gallery/electronics_box.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 MiB

BIN
gallery/interface.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 314 KiB

BIN
gallery/rgb_preview2.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 MiB

BIN
gallery/thumb.JPG Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 65 KiB