This is a fork of [jasoncoon's esp8266 fastled webserver](https://github.com/jasoncoon/esp8266-fastled-webserver) that was adapted to control the colors of my [DIY-Nanoleaf Replica](https://www.thingiverse.com/thing:3354082).
![Wemos D1 Mini Pro & Headers](https://ae01.alicdn.com/kf/HTB1QYHzJKuSBuNjy1Xcq6AYjFXau/ESP8266-ESP-12-ESP12-WeMos-D1-Mini-Modul-Wemos-D1-Mini-WiFi-Entwicklung-Bord-Micro-USB.jpg)
[Wemos D1 mini](http://s.click.aliexpress.com/e/cBDdafPw) is recommended, but any other ESP8266 variant should work too, but it might require an additional step-down converter.
[WS2812b led strip](http://s.click.aliexpress.com/e/SkQFQqc), make sure you choose IP30 any other IP rating wouldn't make any sense and might not even fit.
The app is installed via the Arduino IDE which can be [downloaded here](https://www.arduino.cc/en/main/software). The ESP8266 boards will need to be added to the Arduino IDE which is achieved as follows. Click File > Preferences and copy and paste the URL "http://arduino.esp8266.com/stable/package_esp8266com_index.json" into the Additional Boards Manager URLs field. Click OK. Click Tools > Boards: ... > Boards Manager. Find and click on ESP8266 (using the Search function may expedite this). Click on Install. After installation, click on Close and then select your ESP8266 board from the Tools > Board: ... menu.
The app depends on the following libraries. They must either be downloaded from GitHub and placed in the Arduino 'libraries' folder, or installed as [described here](https://www.arduino.cc/en/Guide/Libraries) by using the Arduino library manager.
Download the app code from GitHub using the green Clone or Download button from [GitHub](https://github.com/NimmLor/esp8266-nanoleaf-webserver) and click Download ZIP. Decompress the ZIP file in your Arduino sketch folder. Rename the folder from *esp8266-nanoleaf-webserver-master* to *esp8266-nanoleaf-webserver*
The web app needs to be uploaded to the ESP8266's SPIFFS. You can do this within the Arduino IDE after installing the [Arduino ESP8266FS tool](http://esp8266.github.io/Arduino/versions/2.3.0/doc/filesystem.html#uploading-files-to-file-system). An alternative would be to install the [Visual Micro](https://www.visualmicro.com/) plugin for Visual Studio.
The most important thing to do is to set the amount of 'leafs' and the amount of led pixels that one 'leaf' contains.
For instance I use 12 leafs (triangles) with a total of 12 pixels in one leaf (=4 leds in each corner of the triangle).
```c++
#define LEAFCOUNT 12
#define PIXELS_PER_LEAF 12
```
Next enter the pin where the *Data* line is connected to, in my case it's pin D4 (you can either write D4 or 2).
`#define DATA_PIN D4`
Another **important** step is to create the **Secrets.h** file. Create a new tab (**ctrl**+**shift**+**n**) and name it *Secrets.h*, this file contains your WIFI credentials and it's structure must look like this:
If colors appear to be swapped you should change the color order. For me, red and green was swapped so i had to change the color order from *RGB* to *GRB*.
![circuit with logic level converter](https://github.com/NimmLor/esp8266-nanoleaf-webserver/blob/master/gallery/circuit_logic_level_Steckplatine.jpg?raw=true)
It works with any language that is supported by Alexa and can be easily expanded to support more activities or patterns. How you want to call them (Nanoleaf, Nanoleafs, Nano, Triangles) must be set in the setup of the devices.
#### **Commands**:
- Turn on/off
- Control Brightness
- Control Pattern Speed
- Set Color
- Set into Rainbow mode
- Enable Autoplay and set Duration
- Activate custom activities
> *Alexa, turn Nanoleafs **on/off***
> *Alexa, set Nanoleafs 70%*
> Alexa, dim Nanoleafs
> *Alexa, Nanoleaf speed 20%*
> *Alexa, set Nanoleafs pink*
> *Alexa, turn Nanoleaf rainbow on*
> *Alexa, turn Nanoleaf Autoplay on*
> *Alexa, set Nanoleaf Autoplay 40*
>
> Alexa, Nanoleaf Default
> Alexa, Nanoleaf Mode 1
> Alexa, Nanoleaf Mode 2
> Alexa, Nanoleaf Mode 3
### Node-RED GUI
The Node-RED GUI is an addition to the regular UI that is running on the Wemos D1 mini. It allows to create and save custom patterns and also control all regular parameters same as the ESP8266 webserver. It can be accessed by any device.
In the Node-RED GUI you can easily create your nanoleaf setup by using the *Nanoleaf Designer*. It's easy to use and allows almost any design that is possible. But it might have still some minor bugs.
With the *Nanoleaf Custom Pattern Designer* you can create custom patterns with effects. Currently the individual leafs can be set to *Static* mode and *Breathe* mode that allows to set a phase shift and lets the leafs breathe. Flow-mode follows in the next update.
The Alexa integration uses the *Node-RED Alexa Home Skill Bridge* to redirect the commands from alexa to Node-RED.
### 1. Create a new Bridge account
Head to https://alexa-node-red.bm.hardill.me.uk/newuser and create a new account.
Afterwards login into your account.
### 2. Create the Devices
You have to create devices that are called by Alexa.
#### 2.1 Main Nanoleaf Device
First create the devices that control a few devices that are used to turn on/off the nanoleafs and controls the brightness. I've called them "Nanoleafs", "Nanoleaf", "Nano" and "Triangles", but a single one would be enough too.
Click the **Add Device** button and choose. Repeat this step for all your names.
Patterns are requested by the app from the ESP8266, so as new patterns are added, they're automatically listed in the app.
The web app is stored in SPIFFS (on-board flash memory).
The web app is a single page app that uses [jQuery](https://jquery.com) and [Bootstrap](http://getbootstrap.com). It has buttons for On/Off, a slider for brightness, a pattern selector, and a color picker (using [jQuery MiniColors](http://labs.abeautifulsite.net/jquery-minicolors)). Event handlers for the controls are wired up, so you don't have to click a 'Send' button after making changes. The brightness slider and the color picker use a delayed event handler, to prevent from flooding the ESP8266 web server with too many requests too quickly.
The only drawback to SPIFFS that I've found so far is uploading the files can be extremely slow, requiring several minutes, sometimes regardless of how large the files are. It can be so slow that I've been just developing the web app and debugging locally on my desktop (with a hard-coded IP for the ESP8266), before uploading to SPIFFS and testing on the ESP8266.
The firmware implements basic [RESTful web services](https://en.wikipedia.org/wiki/Representational_state_transfer) using the ESP8266WebServer library. Current values are requested with HTTP GETs, and values are set with POSTs using query string parameters. It can run in connected or standalone access point modes.