Compare commits

..

21 Commits

Author SHA1 Message Date
02febfa943 docs: update changelog and header for version v1.5.12-beta12
Some checks failed
Release Workflow / detect-provider (push) Successful in 3s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Failing after 2m18s
2025-08-29 14:10:56 +02:00
257f4df800 docs: update platformio.ini for beta version v1.5.12-beta12 2025-08-29 14:10:56 +02:00
bff6e72219 fix: reset NFC state on API send failure to allow retry 2025-08-29 14:10:49 +02:00
26e905050d fix: update createdFilamentId reset value to 65535 for better task handling 2025-08-29 13:40:29 +02:00
046f770a52 fix: update createdVendorId reset value to 65535 for improved API handling 2025-08-29 13:29:07 +02:00
2587227e78 docs: update changelog and header for version v1.5.12-beta11
All checks were successful
Release Workflow / detect-provider (push) Successful in 3s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m6s
2025-08-29 13:19:22 +02:00
0f19dc4f46 docs: update platformio.ini for beta version v1.5.12-beta11 2025-08-29 13:19:21 +02:00
721dac1ead fix: update spoolman ID reset values to 65535 for better API response detection 2025-08-29 13:19:17 +02:00
08abd1a37f docs: update changelog and header for version v1.5.12-beta10
All checks were successful
Release Workflow / detect-provider (push) Successful in 3s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m32s
2025-08-29 13:09:26 +02:00
da78861613 docs: update platformio.ini for beta version v1.5.12-beta10 2025-08-29 13:09:25 +02:00
9231a303f3 refactor: streamline task creation in checkVendor and checkFilament functions 2025-08-29 13:09:17 +02:00
d12e766cd7 docs: update changelog and header for version v1.5.12-beta9
All checks were successful
Release Workflow / detect-provider (push) Successful in 3s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m14s
2025-08-29 12:56:07 +02:00
af7bc23703 docs: update platformio.ini for beta version v1.5.12-beta9 2025-08-29 12:56:07 +02:00
de39892f64 fix: update vendor and filament ID handling to use NULL and add delays for stability 2025-08-29 12:55:51 +02:00
40cb835e51 docs: update changelog and header for version v1.5.12-beta8
All checks were successful
Release Workflow / detect-provider (push) Successful in 4s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m31s
2025-08-29 11:03:11 +02:00
eb9d9e74f4 docs: update platformio.ini for beta version v1.5.12-beta8 2025-08-29 11:03:11 +02:00
d8af3f45e5 fix: correct color_hex key usage and comment out unused date fields in spool creation 2025-08-29 11:03:05 +02:00
96bb8f9c7c fix: add delay to ensure proper setting of vendor and filament IDs after API state changes 2025-08-29 10:58:06 +02:00
b8b6893cd0 docs: update changelog and header for version v1.5.12-beta7
All checks were successful
Release Workflow / detect-provider (push) Successful in 5s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m40s
2025-08-29 10:32:32 +02:00
0a246c1fe4 docs: update platformio.ini for beta version v1.5.12-beta7 2025-08-29 10:32:31 +02:00
965ea5da1e fix: improve API state handling and vendor name formatting 2025-08-29 10:31:26 +02:00
5 changed files with 514 additions and 129 deletions

View File

@@ -1,5 +1,56 @@
# Changelog
## [1.5.12-beta12] - 2025-08-29
### Changed
- update platformio.ini for beta version v1.5.12-beta12
### Fixed
- reset NFC state on API send failure to allow retry
- update createdFilamentId reset value to 65535 for better task handling
- update createdVendorId reset value to 65535 for improved API handling
## [1.5.12-beta11] - 2025-08-29
### Changed
- update platformio.ini for beta version v1.5.12-beta11
### Fixed
- update spoolman ID reset values to 65535 for better API response detection
## [1.5.12-beta10] - 2025-08-29
### Changed
- update platformio.ini for beta version v1.5.12-beta10
- streamline task creation in checkVendor and checkFilament functions
## [1.5.12-beta9] - 2025-08-29
### Added
- update vendor and filament ID handling to use NULL and add delays for stability
### Changed
- update platformio.ini for beta version v1.5.12-beta9
## [1.5.12-beta8] - 2025-08-29
### Added
- add delay to ensure proper setting of vendor and filament IDs after API state changes
### Changed
- update platformio.ini for beta version v1.5.12-beta8
### Fixed
- correct color_hex key usage and comment out unused date fields in spool creation
## [1.5.12-beta7] - 2025-08-29
### Changed
- update platformio.ini for beta version v1.5.12-beta7
### Fixed
- improve API state handling and vendor name formatting
## [1.5.12-beta6] - 2025-08-29
### Changed
- update platformio.ini for beta version v1.5.12-beta6

View File

@@ -9,7 +9,7 @@
; https://docs.platformio.org/page/projectconf.html
[common]
version = "1.5.12-beta6"
version = "1.5.12-beta12"
to_old_version = "1.5.0"
##

View File

@@ -5,6 +5,7 @@
#include <Preferences.h>
#include "debug.h"
#include "scale.h"
#include "nfc.h"
#include <time.h>
volatile spoolmanApiStateType spoolmanApiState = API_IDLE;
@@ -121,7 +122,7 @@ void sendToApi(void *parameter) {
// Wait until API is IDLE
while(spoolmanApiState != API_IDLE){
Serial.println("Waiting!");
vTaskDelay(100 / portTICK_PERIOD_MS);
yield();
}
spoolmanApiState = API_TRANSMITTING;
@@ -151,7 +152,7 @@ void sendToApi(void *parameter) {
else httpCode = http.PUT(updatePayload);
if (httpCode == HTTP_CODE_OK) {
Serial.println("Spoolman erfolgreich aktualisiert");
Serial.println("Spoolman Abfrage erfolgreich");
// Restgewicht der Spule auslesen
String payload = http.getString();
@@ -345,9 +346,8 @@ void sendToApi(void *parameter) {
break;
}
Serial.println("Fehler beim Senden an Spoolman! HTTP Code: " + String(httpCode));
// TBD: really required?
vTaskDelay(2000 / portTICK_PERIOD_MS);
nfcReaderState = NFC_IDLE; // Reset NFC state to allow retry
}
http.end();
@@ -617,7 +617,7 @@ uint16_t createVendor(String vendor) {
// Create new vendor in Spoolman database using task system
// Note: Due to async nature, the ID will be stored in createdVendorId global variable
// Note: This function assumes that the caller has already ensured API is IDLE
createdVendorId = 0; // Reset previous value
createdVendorId = 65535; // Reset previous value
String spoolsUrl = spoolmanUrl + apiUrl + "/vendor";
Serial.print("Create vendor with URL: ");
@@ -667,8 +667,8 @@ uint16_t createVendor(String vendor) {
// Wait for task completion and return the created vendor ID
// Note: createdVendorId will be set by sendToApi when response is received
while(spoolmanApiState != API_IDLE) {
vTaskDelay(100 / portTICK_PERIOD_MS);
while(createdVendorId == 65535) {
vTaskDelay(50 / portTICK_PERIOD_MS);
}
return createdVendorId;
@@ -676,9 +676,12 @@ uint16_t createVendor(String vendor) {
uint16_t checkVendor(String vendor) {
// Check if vendor exists using task system
foundVendorId = 0; // Reset previous value
foundVendorId = 65535; // Reset to invalid value to detect when API response is received
String spoolsUrl = spoolmanUrl + apiUrl + "/vendor?name=" + vendor;
String vendorName = vendor;
vendorName.trim();
vendorName.replace(" ", "+");
String spoolsUrl = spoolmanUrl + apiUrl + "/vendor?name=" + vendorName;
Serial.print("Check vendor with URL: ");
Serial.println(spoolsUrl);
@@ -693,25 +696,25 @@ uint16_t checkVendor(String vendor) {
params->updatePayload = ""; // Empty for GET request
// Check if API is idle before creating task
if(spoolmanApiState == API_IDLE){
// Erstelle die Task
BaseType_t result = xTaskCreate(
sendToApi, // Task-Funktion
"SendToApiTask", // Task-Name
6144, // Stackgröße in Bytes
(void*)params, // Parameter
0, // Priorität
NULL // Task-Handle (nicht benötigt)
);
} else {
Serial.println("Not spawning new task, API still active!");
delete params;
return 0;
while (spoolmanApiState != API_IDLE)
{
vTaskDelay(100 / portTICK_PERIOD_MS);
}
// Wait for task completion
while(spoolmanApiState != API_IDLE) {
vTaskDelay(100 / portTICK_PERIOD_MS);
// Erstelle die Task
BaseType_t result = xTaskCreate(
sendToApi, // Task-Funktion
"SendToApiTask", // Task-Name
6144, // Stackgröße in Bytes
(void*)params, // Parameter
0, // Priorität
NULL // Task-Handle (nicht benötigt)
);
// Wait until foundVendorId is updated by the API response (not 65535 anymore)
while (foundVendorId == 65535)
{
vTaskDelay(50 / portTICK_PERIOD_MS);
}
// Check if vendor was found
@@ -737,7 +740,7 @@ uint16_t createFilament(uint16_t vendorId, const JsonDocument& payload) {
// Create new filament in Spoolman database using task system
// Note: Due to async nature, the ID will be stored in createdFilamentId global variable
// Note: This function assumes that the caller has already ensured API is IDLE
createdFilamentId = 0; // Reset previous value
createdFilamentId = 65535; // Reset previous value
String spoolsUrl = spoolmanUrl + apiUrl + "/filament";
Serial.print("Create filament with URL: ");
@@ -745,16 +748,16 @@ uint16_t createFilament(uint16_t vendorId, const JsonDocument& payload) {
// Create JSON payload for filament creation
JsonDocument filamentDoc;
filamentDoc["name"] = payload["name"].as<String>();
filamentDoc["name"] = payload["color_name"].as<String>();
filamentDoc["vendor_id"] = String(vendorId);
filamentDoc["material"] = payload["type"].as<String>();
filamentDoc["density"] = (payload["density"].is<String>() && payload["density"].as<String>().length() > 0) ? payload["density"].as<String>() : "1.24";
filamentDoc["diameter"] = (payload["diameter"].is<String>() && payload["diameter"].as<String>().length() > 0) ? payload["diameter"].as<String>() : "1.75";
filamentDoc["weight"] = payload["weight"].as<String>();
filamentDoc["weight"] = String(weight);
filamentDoc["spool_weight"] = payload["spool_weight"].as<String>();
filamentDoc["article_number"] = payload["artnr"].as<String>();
filamentDoc["extruder_temp"] = payload["extruder_temp"].is<String>() ? payload["extruder_temp"].as<String>() : "";
filamentDoc["bed_temp"] = payload["bed_temp"].is<String>() ? payload["bed_temp"].as<String>() : "";
filamentDoc["settings_extruder_temp"] = payload["extruder_temp"].is<String>() ? payload["extruder_temp"].as<String>() : "";
filamentDoc["settings_bed_temp"] = payload["bed_temp"].is<String>() ? payload["bed_temp"].as<String>() : "";
if (payload["artnr"].is<String>())
{
@@ -772,7 +775,7 @@ uint16_t createFilament(uint16_t vendorId, const JsonDocument& payload) {
}
else
{
filamentDoc["color_hex"] = (payload["color"].is<String>() && payload["color"].as<String>().length() >= 6) ? payload["color"].as<String>() : "FFFFFF";
filamentDoc["color_hex"] = (payload["color_hex"].is<String>() && payload["color_hex"].as<String>().length() >= 6) ? payload["color_hex"].as<String>() : "FFFFFF";
}
String filamentPayload;
@@ -812,8 +815,8 @@ uint16_t createFilament(uint16_t vendorId, const JsonDocument& payload) {
// Wait for task completion and return the created filament ID
// Note: createdFilamentId will be set by sendToApi when response is received
while(spoolmanApiState != API_IDLE) {
vTaskDelay(100 / portTICK_PERIOD_MS);
while(createdFilamentId == 65535) {
vTaskDelay(50 / portTICK_PERIOD_MS);
}
return createdFilamentId;
@@ -821,7 +824,7 @@ uint16_t createFilament(uint16_t vendorId, const JsonDocument& payload) {
uint16_t checkFilament(uint16_t vendorId, const JsonDocument& payload) {
// Check if filament exists using task system
foundFilamentId = 0; // Reset previous value
foundFilamentId = 65535; // Reset to invalid value to detect when API response is received
String spoolsUrl = spoolmanUrl + apiUrl + "/filament?vendor.id=" + String(vendorId) + "&external_id=" + String(payload["artnr"].as<String>());
Serial.print("Check filament with URL: ");
@@ -837,26 +840,19 @@ uint16_t checkFilament(uint16_t vendorId, const JsonDocument& payload) {
params->spoolsUrl = spoolsUrl;
params->updatePayload = ""; // Empty for GET request
// Check if API is idle before creating task
if(spoolmanApiState == API_IDLE){
// Erstelle die Task
BaseType_t result = xTaskCreate(
sendToApi, // Task-Funktion
"SendToApiTask", // Task-Name
6144, // Stackgröße in Bytes
(void*)params, // Parameter
0, // Priorität
NULL // Task-Handle (nicht benötigt)
);
} else {
Serial.println("Not spawning new task, API still active!");
delete params;
return 0;
}
// Erstelle die Task
BaseType_t result = xTaskCreate(
sendToApi, // Task-Funktion
"SendToApiTask", // Task-Name
6144, // Stackgröße in Bytes
(void*)params, // Parameter
0, // Priorität
NULL // Task-Handle (nicht benötigt)
);
// Wait for task completion
while(spoolmanApiState != API_IDLE) {
vTaskDelay(100 / portTICK_PERIOD_MS);
// Wait until foundFilamentId is updated by the API response (not 65535 anymore)
while (foundFilamentId == 65535) {
vTaskDelay(50 / portTICK_PERIOD_MS);
}
// Check if filament was found
@@ -882,22 +878,21 @@ uint16_t createSpool(uint16_t vendorId, uint16_t filamentId, JsonDocument& paylo
// Create new spool in Spoolman database using task system
// Note: Due to async nature, the ID will be stored in createdSpoolId global variable
// Note: This function assumes that the caller has already ensured API is IDLE
createdSpoolId = 0; // Reset previous value
createdSpoolId = 65535; // Reset to invalid value to detect when API response is received
String spoolsUrl = spoolmanUrl + apiUrl + "/spool";
Serial.print("Create spool with URL: ");
Serial.println(spoolsUrl);
String currentDate = getCurrentDateISO8601();
//String currentDate = getCurrentDateISO8601();
// Create JSON payload for spool creation
JsonDocument spoolDoc;
spoolDoc["first_used"] = String(currentDate);
spoolDoc["last_used"] = String(currentDate);
//spoolDoc["first_used"] = String(currentDate);
//spoolDoc["last_used"] = String(currentDate);
spoolDoc["filament_id"] = String(filamentId);
spoolDoc["initial_weight"] = weight > 10 ? String(weight) : "1000";
spoolDoc["initial_weight"] = weight > 10 ? String(weight-payload["spool_weight"].as<int>()) : "1000";
spoolDoc["spool_weight"] = (payload["spool_weight"].is<String>() && payload["spool_weight"].as<String>().length() > 0) ? payload["spool_weight"].as<String>() : "180";
spoolDoc["remaining_weight"] = (payload["weight"].is<String>() && payload["weight"].as<String>().length() > 0) ? payload["weight"].as<String>() : "1000";
spoolDoc["used_weight"] = "0";
spoolDoc["lot_nr"] = (payload["lotnr"].is<String>() && payload["lotnr"].as<String>().length() > 0) ? payload["lotnr"].as<String>() : "";
spoolDoc["comment"] = "automatically generated";
spoolDoc["extra"]["nfc_id"] = "\"" + uidString + "\"";
@@ -937,8 +932,8 @@ uint16_t createSpool(uint16_t vendorId, uint16_t filamentId, JsonDocument& paylo
// Wait for task completion and return the created spool ID
// Note: createdSpoolId will be set by sendToApi when response is received
while(spoolmanApiState != API_IDLE) {
vTaskDelay(100 / portTICK_PERIOD_MS);
while(createdSpoolId == 65535) {
vTaskDelay(50 / portTICK_PERIOD_MS);
}
// Write data to tag with startWriteJsonToTag
@@ -947,6 +942,9 @@ uint16_t createSpool(uint16_t vendorId, uint16_t filamentId, JsonDocument& paylo
String payloadString;
serializeJson(payload, payloadString);
nfcReaderState = NFC_IDLE;
vTaskDelay(50 / portTICK_PERIOD_MS);
startWriteJsonToTag(true, payloadString.c_str());
return createdSpoolId;

View File

@@ -99,9 +99,7 @@ bool formatNdefTag() {
}
return success;
}
uint16_t readTagSize()
}uint16_t readTagSize()
{
uint8_t buffer[4];
memset(buffer, 0, 4);
@@ -109,97 +107,412 @@ uint16_t readTagSize()
return buffer[2]*8;
}
String detectNtagType()
{
// Read capability container from page 3 to determine exact NTAG type
uint8_t ccBuffer[4];
memset(ccBuffer, 0, 4);
if (!nfc.ntag2xx_ReadPage(3, ccBuffer)) {
Serial.println("Failed to read capability container");
return "UNKNOWN";
}
// Also read configuration pages to get more info
uint8_t configBuffer[4];
memset(configBuffer, 0, 4);
Serial.print("Capability Container: ");
for (int i = 0; i < 4; i++) {
if (ccBuffer[i] < 0x10) Serial.print("0");
Serial.print(ccBuffer[i], HEX);
Serial.print(" ");
}
Serial.println();
// NTAG type detection based on capability container
// CC[2] contains the data area size in bytes / 8
uint16_t dataAreaSize = ccBuffer[2] * 8;
Serial.print("Data area size from CC: ");
Serial.println(dataAreaSize);
// Try to read different configuration pages to determine exact type
String tagType = "UNKNOWN";
// Try to read page 41 (NTAG213 ends at page 39, so this should fail)
uint8_t testBuffer[4];
bool canReadPage41 = nfc.ntag2xx_ReadPage(41, testBuffer);
// Try to read page 130 (NTAG215 ends at page 129, so this should fail for NTAG213/215)
bool canReadPage130 = nfc.ntag2xx_ReadPage(130, testBuffer);
if (dataAreaSize <= 180 && !canReadPage41) {
tagType = "NTAG213";
Serial.println("Detected: NTAG213 (cannot read beyond page 39)");
} else if (dataAreaSize <= 540 && canReadPage41 && !canReadPage130) {
tagType = "NTAG215";
Serial.println("Detected: NTAG215 (can read page 41, cannot read page 130)");
} else if (dataAreaSize <= 928 && canReadPage130) {
tagType = "NTAG216";
Serial.println("Detected: NTAG216 (can read page 130)");
} else {
// Fallback: use data area size from capability container
if (dataAreaSize <= 180) {
tagType = "NTAG213";
Serial.println("Fallback detection: NTAG213 based on data area size");
} else if (dataAreaSize <= 540) {
tagType = "NTAG215";
Serial.println("Fallback detection: NTAG215 based on data area size");
} else {
tagType = "NTAG216";
Serial.println("Fallback detection: NTAG216 based on data area size");
}
}
return tagType;
}
uint16_t getAvailableUserDataSize()
{
String tagType = detectNtagType();
uint16_t userDataSize = 0;
if (tagType == "NTAG213") {
// NTAG213: User data from page 4-39 (36 pages * 4 bytes = 144 bytes)
userDataSize = 144;
Serial.println("NTAG213 confirmed - 144 bytes user data available");
} else if (tagType == "NTAG215") {
// NTAG215: User data from page 4-129 (126 pages * 4 bytes = 504 bytes)
userDataSize = 504;
Serial.println("NTAG215 confirmed - 504 bytes user data available");
} else if (tagType == "NTAG216") {
// NTAG216: User data from page 4-225 (222 pages * 4 bytes = 888 bytes)
userDataSize = 888;
Serial.println("NTAG216 confirmed - 888 bytes user data available");
} else {
// Unknown tag type, use conservative estimate
uint16_t tagSize = readTagSize();
userDataSize = tagSize - 60; // Reserve 60 bytes for headers/config
Serial.print("Unknown NTAG type, using conservative estimate: ");
Serial.println(userDataSize);
}
return userDataSize;
}
uint16_t getMaxUserDataPages()
{
String tagType = detectNtagType();
uint16_t maxPages = 0;
if (tagType == "NTAG213") {
maxPages = 39; // Pages 4-39 are user data
} else if (tagType == "NTAG215") {
maxPages = 129; // Pages 4-129 are user data
} else if (tagType == "NTAG216") {
maxPages = 225; // Pages 4-225 are user data
} else {
// Conservative fallback
maxPages = 39;
Serial.println("Unknown tag type, using NTAG213 page limit as fallback");
}
Serial.print("Maximum writable page: ");
Serial.println(maxPages);
return maxPages;
}
bool clearUserDataArea() {
// IMPORTANT: Only clear user data pages, NOT configuration pages
// NTAG layout: Pages 0-3 (header), 4-N (user data), N+1-N+3 (config) - NEVER touch config!
String tagType = detectNtagType();
// Calculate safe user data page ranges (NEVER touch config pages!)
uint16_t firstUserPage = 4;
uint16_t lastUserPage = 0;
if (tagType == "NTAG213") {
lastUserPage = 39; // Pages 40-42 are config - DO NOT TOUCH!
Serial.println("NTAG213: Sichere Löschung Seiten 4-39");
} else if (tagType == "NTAG215") {
lastUserPage = 129; // Pages 130-132 are config - DO NOT TOUCH!
Serial.println("NTAG215: Sichere Löschung Seiten 4-129");
} else if (tagType == "NTAG216") {
lastUserPage = 225; // Pages 226-228 are config - DO NOT TOUCH!
Serial.println("NTAG216: Sichere Löschung Seiten 4-225");
} else {
// Conservative fallback - only clear a small safe area
lastUserPage = 39;
Serial.println("UNKNOWN TAG: Konservative Löschung Seiten 4-39");
}
Serial.println("WARNUNG: Vollständiges Löschen kann Tag beschädigen!");
Serial.println("Verwende stattdessen selective NDEF-Überschreibung...");
// Instead of clearing everything, just write a minimal NDEF structure
// This is much safer and preserves tag integrity
return initializeNdefStructure();
}
bool initializeNdefStructure() {
// Write minimal NDEF structure without destroying the tag
// This creates a clean slate while preserving tag functionality
Serial.println("Initialisiere sichere NDEF-Struktur...");
// Minimal NDEF structure: TLV with empty message
uint8_t minimalNdef[8] = {
0x03, // NDEF Message TLV Tag
0x03, // Length (3 bytes for minimal empty record)
0xD0, // NDEF Record Header (TNF=0x0:Empty + SR + ME + MB)
0x00, // Type Length (0 = empty record)
0x00, // Payload Length (0 = empty record)
0xFE, // Terminator TLV
0x00, 0x00 // Padding
};
// Write the minimal structure starting at page 4
uint8_t pageBuffer[4];
for (int i = 0; i < 8; i += 4) {
memcpy(pageBuffer, &minimalNdef[i], 4);
if (!nfc.ntag2xx_WritePage(4 + (i / 4), pageBuffer)) {
Serial.print("Fehler beim Initialisieren von Seite ");
Serial.println(4 + (i / 4));
return false;
}
Serial.print("Seite ");
Serial.print(4 + (i / 4));
Serial.print(" initialisiert: ");
for (int j = 0; j < 4; j++) {
if (pageBuffer[j] < 0x10) Serial.print("0");
Serial.print(pageBuffer[j], HEX);
Serial.print(" ");
}
Serial.println();
}
Serial.println("✓ Sichere NDEF-Struktur initialisiert");
Serial.println("✓ Tag bleibt funktionsfähig und überschreibbar");
return true;
}
uint8_t ntag2xx_WriteNDEF(const char *payload) {
// Determine exact tag type and capabilities first
String tagType = detectNtagType();
uint16_t tagSize = readTagSize();
Serial.print("Tag Size: ");Serial.println(tagSize);
uint16_t availableUserData = getAvailableUserDataSize();
uint16_t maxWritablePage = getMaxUserDataPages();
Serial.println("=== NFC TAG ANALYSIS ===");
Serial.print("Tag Type: ");Serial.println(tagType);
Serial.print("Total Tag Size: ");Serial.println(tagSize);
Serial.print("Available User Data: ");Serial.println(availableUserData);
Serial.print("Max Writable Page: ");Serial.println(maxWritablePage);
Serial.println("========================");
uint8_t pageBuffer[4] = {0, 0, 0, 0};
Serial.println("Beginne mit dem Schreiben der NDEF-Nachricht...");
// Figure out how long the string is
uint8_t len = strlen(payload);
uint16_t payloadLen = strlen(payload);
Serial.print("Länge der Payload: ");
Serial.println(len);
Serial.println(payloadLen);
Serial.print("Payload: ");Serial.println(payload);
// Setup the record header
// See NFCForum-TS-Type-2-Tag_1.1.pdf for details
uint8_t pageHeader[21] = {
/* NDEF Message TLV - JSON Record */
0x03, /* Tag Field (0x03 = NDEF Message) */
(uint8_t)(len+3+16), /* Payload Length (including NDEF header) */
0xD2, /* NDEF Record Header (TNF=0x2:MIME Media + SR + ME + MB) */
0x10, /* Type Length for the record type indicator */
(uint8_t)(len), /* Payload len */
'a', 'p', 'p', 'l', 'i', 'c', 'a', 't', 'i', 'o', 'n', '/', 'j', 's', 'o', 'n'
};
// MIME type for JSON
const char mimeType[] = "application/json";
uint8_t mimeTypeLen = strlen(mimeType);
// Calculate NDEF record size
uint8_t ndefRecordHeaderSize = 3; // Header byte + Type Length + Payload Length (short record)
uint16_t ndefRecordSize = ndefRecordHeaderSize + mimeTypeLen + payloadLen;
// Calculate TLV size - need to check if we need extended length format
uint8_t tlvHeaderSize;
uint16_t totalTlvSize;
if (ndefRecordSize <= 254) {
// Standard TLV format: Tag (1) + Length (1) + Value (ndefRecordSize)
tlvHeaderSize = 2;
totalTlvSize = tlvHeaderSize + ndefRecordSize + 1; // +1 for terminator TLV
} else {
// Extended TLV format: Tag (1) + 0xFF + Length (2) + Value (ndefRecordSize)
tlvHeaderSize = 4;
totalTlvSize = tlvHeaderSize + ndefRecordSize + 1; // +1 for terminator TLV
}
// Make sure the URI payload will fit in dataLen (include 0xFE trailer)
if ((len < 1) || (len + 1 > (tagSize - sizeof(pageHeader))))
{
Serial.print("NDEF Record Size: ");
Serial.println(ndefRecordSize);
Serial.print("Total TLV Size: ");
Serial.println(totalTlvSize);
// Check if the message fits in the available user data space
if (totalTlvSize > availableUserData) {
Serial.println();
Serial.println("!!!!!!!!!!!!!!!!!!!!!!!!");
Serial.println("Fehler: Die Nutzlast passt nicht in die Datenlänge.");
Serial.println("FEHLER: Payload zu groß für diesen Tag-Typ!");
Serial.print("Tag-Typ: ");Serial.println(tagType);
Serial.print("Benötigt: ");Serial.print(totalTlvSize);Serial.println(" Bytes");
Serial.print("Verfügbar: ");Serial.print(availableUserData);Serial.println(" Bytes");
Serial.print("Überschuss: ");Serial.print(totalTlvSize - availableUserData);Serial.println(" Bytes");
if (tagType == "NTAG213") {
Serial.println("EMPFEHLUNG: Verwenden Sie einen NTAG215 (504 Bytes) oder NTAG216 (888 Bytes) Tag!");
Serial.println("Oder kürzen Sie die Payload um mindestens " + String(totalTlvSize - availableUserData) + " Bytes.");
}
Serial.println("!!!!!!!!!!!!!!!!!!!!!!!!");
Serial.println();
oledShowMessage("Tag zu klein für Payload");
vTaskDelay(3000 / portTICK_PERIOD_MS);
return 0;
}
// Kombiniere Header und Payload
int totalSize = sizeof(pageHeader) + len;
uint8_t* combinedData = (uint8_t*) malloc(totalSize);
if (combinedData == NULL)
{
Serial.println("Fehler: Nicht genug Speicher vorhanden.");
oledShowMessage("Tag too small");
Serial.println("✓ Payload passt in den Tag - Schreibvorgang wird fortgesetzt");
// IMPORTANT: Use safe NDEF initialization instead of aggressive clearing
Serial.println("Schritt 1: Sichere NDEF-Initialisierung...");
if (!initializeNdefStructure()) {
Serial.println("FEHLER: Konnte NDEF-Struktur nicht initialisieren!");
oledShowMessage("NDEF init failed");
vTaskDelay(2000 / portTICK_PERIOD_MS);
return 0;
}
Serial.println("✓ NDEF-Struktur sicher initialisiert");
// Allocate memory for the complete TLV structure
uint8_t* tlvData = (uint8_t*) malloc(totalTlvSize);
if (tlvData == NULL) {
Serial.println("Fehler: Nicht genug Speicher für TLV-Daten vorhanden.");
oledShowMessage("Memory error");
vTaskDelay(2000 / portTICK_PERIOD_MS);
return 0;
}
// Kombiniere Header und Payload
memcpy(combinedData, pageHeader, sizeof(pageHeader));
memcpy(&combinedData[sizeof(pageHeader)], payload, len);
// Build TLV structure
uint16_t offset = 0;
// TLV Header
tlvData[offset++] = 0x03; // NDEF Message TLV Tag
if (ndefRecordSize <= 254) {
// Standard length format
tlvData[offset++] = (uint8_t)ndefRecordSize;
} else {
// Extended length format
tlvData[offset++] = 0xFF;
tlvData[offset++] = (uint8_t)(ndefRecordSize >> 8); // High byte
tlvData[offset++] = (uint8_t)(ndefRecordSize & 0xFF); // Low byte
}
// Schreibe die Seiten
uint8_t a = 0;
uint8_t i = 0;
while (totalSize > 0) {
// NDEF Record Header
tlvData[offset++] = 0xD2; // NDEF Record Header (TNF=0x2:MIME Media + SR + ME + MB)
tlvData[offset++] = mimeTypeLen; // Type Length
tlvData[offset++] = (uint8_t)payloadLen; // Payload Length (short record format)
// MIME Type
memcpy(&tlvData[offset], mimeType, mimeTypeLen);
offset += mimeTypeLen;
// JSON Payload
memcpy(&tlvData[offset], payload, payloadLen);
offset += payloadLen;
// Terminator TLV
tlvData[offset] = 0xFE;
Serial.print("Gesamt-TLV-Länge: ");
Serial.println(offset + 1);
// Debug: Print first 64 bytes of TLV data
Serial.println("TLV Daten (erste 64 Bytes):");
for (int i = 0; i < min((int)(offset + 1), 64); i++) {
if (tlvData[i] < 0x10) Serial.print("0");
Serial.print(tlvData[i], HEX);
Serial.print(" ");
if ((i + 1) % 16 == 0) Serial.println();
}
Serial.println();
// Write data to tag pages (starting from page 4)
uint16_t bytesWritten = 0;
uint8_t pageNumber = 4;
uint16_t totalBytes = offset + 1;
Serial.println("Schritt 2: Schreibe neue NDEF-Daten...");
Serial.print("Schreibe ");
Serial.print(totalBytes);
Serial.print(" Bytes in ");
Serial.print((totalBytes + 3) / 4); // Round up division
Serial.println(" Seiten...");
while (bytesWritten < totalBytes && pageNumber <= maxWritablePage) {
// Clear page buffer
memset(pageBuffer, 0, 4);
int bytesToWrite = (totalSize < 4) ? totalSize : 4;
memcpy(pageBuffer, combinedData + a, bytesToWrite);
// Calculate how many bytes to write to this page
uint16_t bytesToWrite = min(4, (int)(totalBytes - bytesWritten));
// Copy data to page buffer
memcpy(pageBuffer, &tlvData[bytesWritten], bytesToWrite);
//uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
//uint8_t uidLength;
//nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength, 100);
if (!(nfc.ntag2xx_WritePage(4+i, pageBuffer)))
{
Serial.println("Fehler beim Schreiben der Seite.");
free(combinedData);
// Write page to tag
if (!nfc.ntag2xx_WritePage(pageNumber, pageBuffer)) {
Serial.print("FEHLER beim Schreiben der Seite ");
Serial.println(pageNumber);
Serial.print("Möglicherweise Page-Limit erreicht für ");
Serial.println(tagType);
free(tlvData);
return 0;
}
yield();
//esp_task_wdt_reset();
Serial.print("Seite ");
Serial.print(pageNumber);
Serial.print(" ✓: ");
for (int i = 0; i < 4; i++) {
if (pageBuffer[i] < 0x10) Serial.print("0");
Serial.print(pageBuffer[i], HEX);
Serial.print(" ");
}
Serial.println();
i++;
a += 4;
totalSize -= bytesToWrite;
bytesWritten += bytesToWrite;
pageNumber++;
yield();
vTaskDelay(5 / portTICK_PERIOD_MS); // Small delay between page writes
}
// Ensure the NDEF message is properly terminated
memset(pageBuffer, 0, 4);
pageBuffer[0] = 0xFE; // NDEF record footer
if (!(nfc.ntag2xx_WritePage(4+i, pageBuffer)))
{
Serial.println("Fehler beim Schreiben des End-Bits.");
free(combinedData);
free(tlvData);
if (bytesWritten < totalBytes) {
Serial.println("WARNUNG: Nicht alle Daten konnten geschrieben werden!");
Serial.print("Geschrieben: ");
Serial.print(bytesWritten);
Serial.print(" von ");
Serial.print(totalBytes);
Serial.println(" Bytes");
Serial.print("Gestoppt bei Seite: ");
Serial.println(pageNumber - 1);
return 0;
}
Serial.println("NDEF-Nachricht erfolgreich geschrieben.");
free(combinedData);
Serial.println();
Serial.println("✓ NDEF-Nachricht erfolgreich geschrieben!");
Serial.print("✓ Tag-Typ: ");Serial.println(tagType);
Serial.print("✓ Insgesamt ");Serial.print(bytesWritten);Serial.println(" Bytes geschrieben");
Serial.print("✓ Verwendete Seiten: 4-");Serial.println(pageNumber - 1);
Serial.print("✓ Speicher-Auslastung: ");
Serial.print((bytesWritten * 100) / availableUserData);
Serial.println("%");
Serial.println("✓ Bestehende Daten wurden überschrieben");
Serial.println();
return 1;
}
@@ -364,8 +677,20 @@ bool decodeNdefAndReturnJson(const byte* encodedMessage, String uidString) {
Serial.print("Actual JSON length extracted: ");
Serial.println(actualJsonLength);
Serial.println("Decoded JSON Data:");
Serial.print("Total nfcJsonData length: ");
Serial.println(nfcJsonData.length());
Serial.println("=== DECODED JSON DATA START ===");
Serial.println(nfcJsonData);
Serial.println("=== DECODED JSON DATA END ===");
// Check if JSON was truncated
if (nfcJsonData.length() < payloadLength && !nfcJsonData.endsWith("}")) {
Serial.println("WARNING: JSON payload appears to be truncated!");
Serial.print("Expected payload length: ");
Serial.println(payloadLength);
Serial.print("Actual extracted length: ");
Serial.println(nfcJsonData.length());
}
// Trim any trailing whitespace or invalid characters
nfcJsonData.trim();
@@ -597,7 +922,9 @@ void scanRfidTask(void * parameter) {
oledShowProgressBar(0, octoEnabled?5:4, "Reading", "Detecting tag");
//vTaskDelay(500 / portTICK_PERIOD_MS);
// Wait 1 second after tag detection to stabilize connection
Serial.println("Tag detected, waiting 1 second for stabilization...");
vTaskDelay(1000 / portTICK_PERIOD_MS);
// create Tag UID string
String uidString = "";
@@ -620,24 +947,34 @@ void scanRfidTask(void * parameter) {
// We probably have an NTAG2xx card (though it could be Ultralight as well)
Serial.println("Seems to be an NTAG2xx tag (7 byte UID)");
Serial.print("Tag size: ");
Serial.print(tagSize);
Serial.println(" bytes");
uint8_t numPages = readTagSize()/4;
for (uint8_t i = 4; i < 4+numPages; i++) {
if (!nfc.ntag2xx_ReadPage(i, data+(i-4) * 4))
{
break; // Stop if reading fails
}
// Check for NDEF message end
if (data[(i - 4) * 4] == 0xFE)
{
Serial.println("Found NDEF message end marker");
break; // End of NDEF message
}
yield();
esp_task_wdt_reset();
vTaskDelay(pdMS_TO_TICKS(1));
// Increased delay to ensure stable reading
vTaskDelay(pdMS_TO_TICKS(5)); // Increased from 1ms to 5ms
}
Serial.println("Tag reading completed, starting NDEF decode...");
if (!decodeNdefAndReturnJson(data, uidString))
{
oledShowProgressBar(1, 1, "Failure", "Unknown tag");

View File

@@ -49,8 +49,7 @@ void scale_loop(void * parameter) {
Serial.println("++++++++++++++++++++++++++++++");
vTaskDelay(pdMS_TO_TICKS(500));
scale.tare();
vTaskDelay(pdMS_TO_TICKS(500));
scale_tare_counter = 10; // damit beim Starten der Waage automatisch getart wird
for(;;) {
if (scale.is_ready())