Compare commits

..

22 Commits

Author SHA1 Message Date
fcd637cc30 docs: update changelog and header for version v2.0.0-beta1
All checks were successful
Release Workflow / detect-provider (push) Successful in 6s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m5s
2025-08-29 18:06:55 +02:00
587485d0de docs: update platformio.ini for beta version v2.0.0-beta1 2025-08-29 18:06:55 +02:00
e0cc99e993 chore: update version to 2.0.0 in platformio.ini 2025-08-29 18:06:48 +02:00
d9a8388ac7 docs: update changelog and header for version v1.5.12-beta18
All checks were successful
Release Workflow / detect-provider (push) Successful in 3s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m8s
2025-08-29 18:04:56 +02:00
cb77112976 docs: update platformio.ini for beta version v1.5.12-beta18 2025-08-29 18:04:56 +02:00
1c0ddb52ba fix: replace progress bar with message display for remaining weight in sendToApi function 2025-08-29 18:04:47 +02:00
17f03e9472 feat: add display delay for vendor, filament, and spool creation processes 2025-08-29 17:57:23 +02:00
213b9c099c docs: update changelog and header for version v1.5.12-beta17
All checks were successful
Release Workflow / detect-provider (push) Successful in 3s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m41s
2025-08-29 17:32:46 +02:00
687e57b77a docs: update platformio.ini for beta version v1.5.12-beta17 2025-08-29 17:32:46 +02:00
aea11e0c06 fix: update vendor check to use shorthand key in payload 2025-08-29 17:31:25 +02:00
bd8f4606c6 feat: add progress bar updates for vendor and filament creation processes 2025-08-29 17:30:04 +02:00
ac91e71c14 refactor: optimize page limit detection and remove redundant verification code 2025-08-29 17:20:44 +02:00
0d3503f4f1 docs: update changelog and header for version v1.5.12-beta16
All checks were successful
Release Workflow / detect-provider (push) Successful in 4s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m4s
2025-08-29 17:04:41 +02:00
1460c6e5f9 docs: update platformio.ini for beta version v1.5.12-beta16 2025-08-29 17:04:41 +02:00
fef7e5aa4b Refactor NFC interface handling and improve error diagnostics
- Removed unused function for getting current date in ISO8601 format.
- Updated JSON key names in filament and spool creation to use shorter identifiers.
- Enhanced NFC interface reset procedure with detailed logging and retry mechanisms.
- Improved stability checks after write operations to ensure NFC interface readiness.
- Added comprehensive error handling and diagnostics for NFC read/write operations.
- Streamlined the quick spool ID check to optimize performance and reliability.
2025-08-29 17:04:33 +02:00
bda8c3dd98 docs: update changelog and header for version v1.5.12-beta15
All checks were successful
Release Workflow / detect-provider (push) Successful in 3s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m10s
2025-08-29 16:02:57 +02:00
8702469020 docs: update platformio.ini for beta version v1.5.12-beta15 2025-08-29 16:02:56 +02:00
2a0f999f3b refactor: enhance NFC write operation diagnostics and improve error handling 2025-08-29 16:02:51 +02:00
c89adb6256 refactor: enhance NFC write operation handling and prevent tag operations during write 2025-08-29 15:52:16 +02:00
1f21954703 docs: update changelog and header for version v1.5.12-beta14
All checks were successful
Release Workflow / detect-provider (push) Successful in 3s
Release Workflow / github-release (push) Has been skipped
Release Workflow / gitea-release (push) Successful in 3m19s
2025-08-29 15:33:13 +02:00
3e59ce1366 docs: update platformio.ini for beta version v1.5.12-beta14 2025-08-29 15:33:13 +02:00
1f880fc8f1 refactor: optimize JSON payload structure and enhance NFC tag validation process 2025-08-29 15:33:06 +02:00
7 changed files with 946 additions and 76 deletions

View File

@@ -1,5 +1,53 @@
# Changelog
## [2.0.0-beta1] - 2025-08-29
### Changed
- update platformio.ini for beta version v2.0.0-beta1
- update version to 2.0.0 in platformio.ini
## [1.5.12-beta18] - 2025-08-29
### Added
- add display delay for vendor, filament, and spool creation processes
### Changed
- update platformio.ini for beta version v1.5.12-beta18
### Fixed
- replace progress bar with message display for remaining weight in sendToApi function
## [1.5.12-beta17] - 2025-08-29
### Added
- add progress bar updates for vendor and filament creation processes
### Changed
- update platformio.ini for beta version v1.5.12-beta17
- optimize page limit detection and remove redundant verification code
### Fixed
- update vendor check to use shorthand key in payload
## [1.5.12-beta16] - 2025-08-29
### Changed
- update platformio.ini for beta version v1.5.12-beta16
- Refactor NFC interface handling and improve error diagnostics
## [1.5.12-beta15] - 2025-08-29
### Changed
- update platformio.ini for beta version v1.5.12-beta15
- enhance NFC write operation diagnostics and improve error handling
- enhance NFC write operation handling and prevent tag operations during write
## [1.5.12-beta14] - 2025-08-29
### Changed
- update platformio.ini for beta version v1.5.12-beta14
- optimize JSON payload structure and enhance NFC tag validation process
## [1.5.12-beta13] - 2025-08-29
### Changed
- update platformio.ini for beta version v1.5.12-beta13

View File

@@ -9,8 +9,8 @@
; https://docs.platformio.org/page/projectconf.html
[common]
version = "1.5.12-beta13"
to_old_version = "1.5.0"
version = "2.0.0-beta1"
to_old_version = "2.0.0"
##
[env:esp32dev]

View File

@@ -9,18 +9,6 @@
#include <time.h>
volatile spoolmanApiStateType spoolmanApiState = API_IDLE;
// Returns current date and time in ISO8601 format
String getCurrentDateISO8601() {
struct tm timeinfo;
if(!getLocalTime(&timeinfo)) {
Serial.println("Failed to obtain time");
return "1970-01-01T00:00:00Z";
}
char timeStringBuff[25];
strftime(timeStringBuff, sizeof(timeStringBuff), "%Y-%m-%dT%H:%M:%SZ", &timeinfo);
return String(timeStringBuff);
}
//bool spoolman_connected = false;
String spoolmanUrl = "";
bool octoEnabled = false;
@@ -170,7 +158,8 @@ void sendToApi(void *parameter) {
//oledShowMessage("Remaining: " + String(remaining_weight) + "g");
if(!octoEnabled){
// TBD: Do not use Strings...
oledShowProgressBar(1, 1, "Spool Tag", ("Done: " + String(remainingWeight) + " g remain").c_str());
//oledShowProgressBar(1, 1, "Spool Tag", ("Done: " + String(remainingWeight) + " g remain").c_str());
oledShowMessage("Remaining: " + String(remainingWeight) + "g");
remainingWeight = 0;
}else{
// ocoto is enabled, trigger octo update
@@ -185,7 +174,8 @@ void sendToApi(void *parameter) {
break;
case API_REQUEST_OCTO_SPOOL_UPDATE:
// TBD: Do not use Strings...
oledShowProgressBar(5, 5, "Spool Tag", ("Done: " + String(remainingWeight) + " g remain").c_str());
//oledShowProgressBar(5, 5, "Spool Tag", ("Done: " + String(remainingWeight) + " g remain").c_str());
oledShowMessage("Remaining: " + String(remainingWeight) + "g");
remainingWeight = 0;
break;
case API_REQUEST_VENDOR_CREATE:
@@ -614,6 +604,8 @@ bool updateSpoolBambuData(String payload) {
// #### Brand Filament
uint16_t createVendor(String vendor) {
oledShowProgressBar(2, 5, "New Brand", "Create new Vendor");
// Create new vendor in Spoolman database using task system
// Note: Due to async nature, the ID will be stored in createdVendorId global variable
// Note: This function assumes that the caller has already ensured API is IDLE
@@ -627,7 +619,6 @@ uint16_t createVendor(String vendor) {
JsonDocument vendorDoc;
vendorDoc["name"] = vendor;
vendorDoc["comment"] = "automatically generated";
vendorDoc["empty_spool_weight"] = 180;
vendorDoc["external_id"] = vendor;
String vendorPayload;
@@ -665,6 +656,9 @@ uint16_t createVendor(String vendor) {
vendorDoc.clear();
// Delay for Display Bar
vTaskDelay(1000 / portTICK_PERIOD_MS);
// Wait for task completion and return the created vendor ID
// Note: createdVendorId will be set by sendToApi when response is received
while(createdVendorId == 65535) {
@@ -675,6 +669,8 @@ uint16_t createVendor(String vendor) {
}
uint16_t checkVendor(String vendor) {
oledShowProgressBar(1, 5, "New Brand", "Check Vendor");
// Check if vendor exists using task system
foundVendorId = 65535; // Reset to invalid value to detect when API response is received
@@ -737,6 +733,8 @@ uint16_t checkVendor(String vendor) {
}
uint16_t createFilament(uint16_t vendorId, const JsonDocument& payload) {
oledShowProgressBar(4, 5, "New Brand", "Create Filament");
// Create new filament in Spoolman database using task system
// Note: Due to async nature, the ID will be stored in createdFilamentId global variable
// Note: This function assumes that the caller has already ensured API is IDLE
@@ -748,34 +746,34 @@ uint16_t createFilament(uint16_t vendorId, const JsonDocument& payload) {
// Create JSON payload for filament creation
JsonDocument filamentDoc;
filamentDoc["name"] = payload["color_name"].as<String>();
filamentDoc["name"] = payload["cn"].as<String>();
filamentDoc["vendor_id"] = String(vendorId);
filamentDoc["material"] = payload["type"].as<String>();
filamentDoc["density"] = (payload["density"].is<String>() && payload["density"].as<String>().length() > 0) ? payload["density"].as<String>() : "1.24";
filamentDoc["diameter"] = (payload["diameter"].is<String>() && payload["diameter"].as<String>().length() > 0) ? payload["diameter"].as<String>() : "1.75";
filamentDoc["material"] = payload["t"].as<String>();
filamentDoc["density"] = (payload["de"].is<String>() && payload["de"].as<String>().length() > 0) ? payload["de"].as<String>() : "1.24";
filamentDoc["diameter"] = (payload["di"].is<String>() && payload["di"].as<String>().length() > 0) ? payload["di"].as<String>() : "1.75";
filamentDoc["weight"] = String(weight);
filamentDoc["spool_weight"] = payload["spool_weight"].as<String>();
filamentDoc["article_number"] = payload["artnr"].as<String>();
filamentDoc["settings_extruder_temp"] = payload["extruder_temp"].is<String>() ? payload["extruder_temp"].as<String>() : "";
filamentDoc["settings_bed_temp"] = payload["bed_temp"].is<String>() ? payload["bed_temp"].as<String>() : "";
if (payload["artnr"].is<String>())
filamentDoc["spool_weight"] = payload["sw"].as<String>();
filamentDoc["article_number"] = payload["an"].as<String>();
filamentDoc["settings_extruder_temp"] = payload["et"].is<String>() ? payload["et"].as<String>() : "";
filamentDoc["settings_bed_temp"] = payload["bt"].is<String>() ? payload["bt"].as<String>() : "";
if (payload["an"].is<String>())
{
filamentDoc["external_id"] = payload["artnr"].as<String>();
filamentDoc["comment"] = payload["url"].is<String>() ? payload["url"].as<String>() + payload["artnr"].as<String>() : "automatically generated";
filamentDoc["external_id"] = payload["an"].as<String>();
filamentDoc["comment"] = payload["u"].is<String>() ? payload["u"].as<String>() + payload["an"].as<String>() : "automatically generated";
}
else
{
filamentDoc["comment"] = payload["url"].is<String>() ? payload["url"].as<String>() : "automatically generated";
filamentDoc["comment"] = payload["u"].is<String>() ? payload["u"].as<String>() : "automatically generated";
}
if (payload["multi_color_hexes"].is<String>()) {
filamentDoc["multi_color_hexes"] = payload["multi_color_hexes"].as<String>();
filamentDoc["multi_color_direction"] = payload["multi_color_direction"].is<String>() ? payload["multi_color_direction"].as<String>() : "";
if (payload["mc"].is<String>()) {
filamentDoc["multi_color_hexes"] = payload["mc"].as<String>();
filamentDoc["multi_color_direction"] = payload["mcd"].is<String>() ? payload["mcd"].as<String>() : "";
}
else
{
filamentDoc["color_hex"] = (payload["color_hex"].is<String>() && payload["color_hex"].as<String>().length() >= 6) ? payload["color_hex"].as<String>() : "FFFFFF";
filamentDoc["color_hex"] = (payload["c"].is<String>() && payload["c"].as<String>().length() >= 6) ? payload["c"].as<String>() : "FFFFFF";
}
String filamentPayload;
@@ -813,6 +811,9 @@ uint16_t createFilament(uint16_t vendorId, const JsonDocument& payload) {
filamentDoc.clear();
// Delay for Display Bar
vTaskDelay(1000 / portTICK_PERIOD_MS);
// Wait for task completion and return the created filament ID
// Note: createdFilamentId will be set by sendToApi when response is received
while(createdFilamentId == 65535) {
@@ -823,6 +824,8 @@ uint16_t createFilament(uint16_t vendorId, const JsonDocument& payload) {
}
uint16_t checkFilament(uint16_t vendorId, const JsonDocument& payload) {
oledShowProgressBar(3, 5, "New Brand", "Check Filament");
// Check if filament exists using task system
foundFilamentId = 65535; // Reset to invalid value to detect when API response is received
@@ -875,6 +878,8 @@ uint16_t checkFilament(uint16_t vendorId, const JsonDocument& payload) {
}
uint16_t createSpool(uint16_t vendorId, uint16_t filamentId, JsonDocument& payload, String uidString) {
oledShowProgressBar(5, 5, "New Brand", "Create new Spool");
// Create new spool in Spoolman database using task system
// Note: Due to async nature, the ID will be stored in createdSpoolId global variable
// Note: This function assumes that the caller has already ensured API is IDLE
@@ -883,17 +888,14 @@ uint16_t createSpool(uint16_t vendorId, uint16_t filamentId, JsonDocument& paylo
String spoolsUrl = spoolmanUrl + apiUrl + "/spool";
Serial.print("Create spool with URL: ");
Serial.println(spoolsUrl);
//String currentDate = getCurrentDateISO8601();
// Create JSON payload for spool creation
JsonDocument spoolDoc;
//spoolDoc["first_used"] = String(currentDate);
//spoolDoc["last_used"] = String(currentDate);
spoolDoc["filament_id"] = String(filamentId);
spoolDoc["initial_weight"] = weight > 10 ? String(weight-payload["spool_weight"].as<int>()) : "1000";
spoolDoc["spool_weight"] = (payload["spool_weight"].is<String>() && payload["spool_weight"].as<String>().length() > 0) ? payload["spool_weight"].as<String>() : "180";
spoolDoc["remaining_weight"] = (payload["weight"].is<String>() && payload["weight"].as<String>().length() > 0) ? payload["weight"].as<String>() : "1000";
spoolDoc["lot_nr"] = (payload["lotnr"].is<String>() && payload["lotnr"].as<String>().length() > 0) ? payload["lotnr"].as<String>() : "";
spoolDoc["initial_weight"] = weight > 10 ? String(weight - payload["sw"].as<int>()) : "1000";
spoolDoc["spool_weight"] = (payload["sw"].is<String>() && payload["sw"].as<String>().length() > 0) ? payload["sw"].as<String>() : "180";
spoolDoc["remaining_weight"] = spoolDoc["initial_weight"];
spoolDoc["lot_nr"] = (payload["an"].is<String>() && payload["an"].as<String>().length() > 0) ? payload["an"].as<String>() : "";
spoolDoc["comment"] = "automatically generated";
spoolDoc["extra"]["nfc_id"] = "\"" + uidString + "\"";
@@ -938,20 +940,33 @@ uint16_t createSpool(uint16_t vendorId, uint16_t filamentId, JsonDocument& paylo
// Write data to tag with startWriteJsonToTag
// void startWriteJsonToTag(const bool isSpoolTag, const char* payload);
payload["sm_id"].set(String(createdSpoolId));
// Create optimized JSON structure with sm_id at the beginning for fast-path detection
JsonDocument optimizedPayload;
optimizedPayload["sm_id"] = String(createdSpoolId); // Place sm_id first for fast scanning
optimizedPayload["b"] = payload["b"].as<String>();
optimizedPayload["cn"] = payload["an"].as<String>();
String payloadString;
serializeJson(payload, payloadString);
serializeJson(optimizedPayload, payloadString);
Serial.println("Optimized JSON with sm_id first:");
Serial.println(payloadString);
optimizedPayload.clear();
nfcReaderState = NFC_IDLE;
vTaskDelay(50 / portTICK_PERIOD_MS);
// Delay for Display Bar
vTaskDelay(1000 / portTICK_PERIOD_MS);
startWriteJsonToTag(true, payloadString.c_str());
return createdSpoolId;
}
bool createBrandFilament(JsonDocument& payload, String uidString) {
uint16_t vendorId = checkVendor(payload["brand"].as<String>());
uint16_t vendorId = checkVendor(payload["b"].as<String>());
if (vendorId == 0) {
Serial.println("ERROR: Failed to create/find vendor");
return false;

View File

@@ -235,7 +235,7 @@ void oledShowIcon(const char* icon) {
display.display();
}
void oledShowProgressBar(const uint8_t step, const uint8_t numSteps, const char* largeText, const char* statusMessage){
void oledShowProgressBar(const uint8_t step, const uint8_t numSteps, const char* largeText, const char* statusMessage) {
assert(step <= numSteps);
// clear data and bar area

View File

@@ -23,6 +23,7 @@ bool tagProcessed = false;
volatile bool pauseBambuMqttTask = false;
volatile bool nfcReadingTaskSuspendRequest = false;
volatile bool nfcReadingTaskSuspendState = false;
volatile bool nfcWriteInProgress = false; // Prevent any tag operations during write
struct NfcWriteParameterType {
bool tagType;
@@ -314,6 +315,71 @@ uint8_t ntag2xx_WriteNDEF(const char *payload) {
Serial.print("Max Writable Page: ");Serial.println(maxWritablePage);
Serial.println("========================");
// Perform additional tag validation by testing write boundaries
Serial.println("=== TAG VALIDATION ===");
uint8_t testBuffer[4] = {0x00, 0x00, 0x00, 0x00};
// Test if we can actually read the max page
if (!nfc.ntag2xx_ReadPage(maxWritablePage, testBuffer)) {
Serial.print("WARNING: Cannot read declared max page ");
Serial.println(maxWritablePage);
// Find actual maximum writable page by testing backwards with optimized approach
uint16_t actualMaxPage = maxWritablePage;
Serial.println("Searching for actual maximum writable page...");
// Use binary search approach for faster page limit detection
uint16_t lowPage = 4;
uint16_t highPage = maxWritablePage;
uint16_t testAttempts = 0;
const uint16_t maxTestAttempts = 15; // Limit search attempts
while (lowPage <= highPage && testAttempts < maxTestAttempts) {
uint16_t midPage = (lowPage + highPage) / 2;
testAttempts++;
Serial.print("Testing page ");
Serial.print(midPage);
Serial.print(" (attempt ");
Serial.print(testAttempts);
Serial.print("/");
Serial.print(maxTestAttempts);
Serial.print(")... ");
if (nfc.ntag2xx_ReadPage(midPage, testBuffer)) {
Serial.println("");
actualMaxPage = midPage;
lowPage = midPage + 1; // Search higher
} else {
Serial.println("");
highPage = midPage - 1; // Search lower
}
// Small delay to prevent interface overload
vTaskDelay(5 / portTICK_PERIOD_MS);
yield();
}
Serial.print("Found actual max readable page: ");
Serial.println(actualMaxPage);
Serial.print("Search completed in ");
Serial.print(testAttempts);
Serial.println(" attempts");
maxWritablePage = actualMaxPage;
} else {
Serial.print("✓ Max page ");Serial.print(maxWritablePage);Serial.println(" is readable");
}
// Calculate maximum available user data based on actual writable pages
uint16_t actualUserDataSize = (maxWritablePage - 3) * 4; // -3 because pages 0-3 are header
availableUserData = actualUserDataSize;
Serial.print("Actual available user data: ");
Serial.print(actualUserDataSize);
Serial.println(" bytes");
Serial.println("========================");
uint8_t pageBuffer[4] = {0, 0, 0, 0};
Serial.println("Beginne mit dem Schreiben der NDEF-Nachricht...");
@@ -375,15 +441,317 @@ uint8_t ntag2xx_WriteNDEF(const char *payload) {
Serial.println("✓ Payload passt in den Tag - Schreibvorgang wird fortgesetzt");
// IMPORTANT: Use safe NDEF initialization instead of aggressive clearing
Serial.println("Schritt 1: Sichere NDEF-Initialisierung...");
// STEP 1: NFC Interface Reset and Reinitialization
Serial.println();
Serial.println("=== SCHRITT 1: NFC-INTERFACE RESET UND NEUINITIALISIERUNG ===");
// First, check if the NFC interface is working at all
Serial.println("Teste aktuellen NFC-Interface-Zustand...");
// Try to read capability container (which worked during detection)
uint8_t ccTest[4];
bool ccReadable = nfc.ntag2xx_ReadPage(3, ccTest);
Serial.print("Capability Container (Seite 3) lesbar: ");
Serial.println(ccReadable ? "" : "");
if (!ccReadable) {
Serial.println("❌ NFC-Interface ist nicht funktionsfähig - führe Reset durch");
// Perform NFC interface reset and reinitialization
Serial.println("Führe NFC-Interface Reset durch...");
// Step 1: Try to reinitialize the NFC interface completely
Serial.println("1. Neuinitialisierung des PN532...");
// Reinitialize the PN532
nfc.begin();
vTaskDelay(500 / portTICK_PERIOD_MS); // Give it time to initialize
// Check firmware version to ensure communication is working
uint32_t versiondata = nfc.getFirmwareVersion();
if (versiondata) {
Serial.print("PN532 Firmware Version: 0x");
Serial.println(versiondata, HEX);
Serial.println("✓ PN532 Kommunikation wiederhergestellt");
} else {
Serial.println("❌ PN532 Kommunikation fehlgeschlagen");
oledShowMessage("NFC Reset failed");
vTaskDelay(3000 / portTICK_PERIOD_MS);
return 0;
}
// Step 2: Reconfigure SAM
Serial.println("2. SAM-Konfiguration...");
nfc.SAMConfig();
vTaskDelay(200 / portTICK_PERIOD_MS);
// Step 3: Re-detect the tag
Serial.println("3. Tag-Wiedererkennung...");
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 };
uint8_t uidLength;
bool tagRedetected = false;
for (int attempts = 0; attempts < 5; attempts++) {
Serial.print("Tag-Erkennungsversuch ");
Serial.print(attempts + 1);
Serial.print("/5... ");
if (nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength, 1000)) {
Serial.println("");
tagRedetected = true;
break;
} else {
Serial.println("");
vTaskDelay(300 / portTICK_PERIOD_MS);
}
}
if (!tagRedetected) {
Serial.println("❌ Tag konnte nach Reset nicht wiedererkannt werden");
oledShowMessage("Tag lost after reset");
vTaskDelay(3000 / portTICK_PERIOD_MS);
return 0;
}
Serial.println("✓ Tag erfolgreich wiedererkannt");
// Step 4: Test basic page reading
Serial.println("4. Test der Grundfunktionalität...");
vTaskDelay(200 / portTICK_PERIOD_MS); // Give interface time to stabilize
ccReadable = nfc.ntag2xx_ReadPage(3, ccTest);
Serial.print("Capability Container nach Reset lesbar: ");
Serial.println(ccReadable ? "" : "");
if (!ccReadable) {
Serial.println("❌ NFC-Interface funktioniert nach Reset immer noch nicht");
oledShowMessage("NFC still broken");
vTaskDelay(3000 / portTICK_PERIOD_MS);
return 0;
}
Serial.println("✓ NFC-Interface erfolgreich wiederhergestellt");
} else {
Serial.println("✓ NFC-Interface ist funktionsfähig");
}
// Display CC content for debugging
if (ccReadable) {
Serial.print("CC Inhalt: ");
for (int i = 0; i < 4; i++) {
if (ccTest[i] < 0x10) Serial.print("0");
Serial.print(ccTest[i], HEX);
Serial.print(" ");
}
Serial.println();
}
Serial.println("=== SCHRITT 2: INTERFACE-FUNKTIONSTEST ===");
// Test a few critical pages to ensure stable operation
uint8_t testData[4];
bool basicPagesReadable = true;
for (uint8_t testPage = 0; testPage <= 6; testPage++) {
bool readable = nfc.ntag2xx_ReadPage(testPage, testData);
Serial.print("Seite ");
Serial.print(testPage);
Serial.print(": ");
if (readable) {
Serial.print("✓ - ");
for (int i = 0; i < 4; i++) {
if (testData[i] < 0x10) Serial.print("0");
Serial.print(testData[i], HEX);
Serial.print(" ");
}
Serial.println();
} else {
Serial.println("❌ - Nicht lesbar");
if (testPage >= 3 && testPage <= 6) { // Critical pages for NDEF
basicPagesReadable = false;
}
}
vTaskDelay(10 / portTICK_PERIOD_MS); // Small delay between reads
}
if (!basicPagesReadable) {
Serial.println("❌ KRITISCHER FEHLER: Grundlegende NDEF-Seiten nicht lesbar!");
Serial.println("Tag oder Interface ist defekt");
oledShowMessage("Tag/Interface defect");
vTaskDelay(3000 / portTICK_PERIOD_MS);
return 0;
}
Serial.println("✓ Alle kritischen Seiten sind lesbar");
Serial.println("===================================================");
Serial.println();
Serial.println("=== SCHRITT 3: SCHREIBBEREITSCHAFTSTEST ===");
// Test write capabilities before attempting the full write
Serial.println("Teste Schreibfähigkeiten des Tags...");
uint8_t testPage[4] = {0xAA, 0xBB, 0xCC, 0xDD}; // Test pattern
uint8_t originalPage[4]; // Store original content
// First, read original content of test page
if (!nfc.ntag2xx_ReadPage(10, originalPage)) {
Serial.println("FEHLER: Kann Testseite nicht lesen für Backup");
oledShowMessage("Test page read error");
vTaskDelay(3000 / portTICK_PERIOD_MS);
return 0;
}
Serial.print("Original Inhalt Seite 10: ");
for (int i = 0; i < 4; i++) {
if (originalPage[i] < 0x10) Serial.print("0");
Serial.print(originalPage[i], HEX);
Serial.print(" ");
}
Serial.println();
// Perform write test
if (!nfc.ntag2xx_WritePage(10, testPage)) {
Serial.println("FEHLER: Schreibtest fehlgeschlagen!");
Serial.println("Tag ist möglicherweise schreibgeschützt oder defekt");
// Additional diagnostics
Serial.println("=== ERWEITERTE SCHREIBTEST-DIAGNOSE ===");
// Check if tag is still present
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 };
uint8_t uidLength;
bool tagStillPresent = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength, 1000);
Serial.print("Tag noch erkannt: ");
Serial.println(tagStillPresent ? "" : "");
if (!tagStillPresent) {
Serial.println("URSACHE: Tag wurde während Schreibtest entfernt!");
oledShowMessage("Tag removed");
} else {
Serial.println("URSACHE: Tag ist vorhanden aber nicht beschreibbar");
Serial.println("Möglicherweise: Schreibschutz, Defekt, oder Interface-Problem");
oledShowMessage("Tag write protected?");
}
Serial.println("==========================================");
vTaskDelay(3000 / portTICK_PERIOD_MS);
return 0;
}
// Verify test write
uint8_t readBack[4];
vTaskDelay(20 / portTICK_PERIOD_MS); // Wait for write to complete
if (!nfc.ntag2xx_ReadPage(10, readBack)) {
Serial.println("FEHLER: Kann Testdaten nicht zurücklesen!");
oledShowMessage("Test verify failed");
vTaskDelay(3000 / portTICK_PERIOD_MS);
return 0;
}
bool testSuccess = true;
for (int i = 0; i < 4; i++) {
if (readBack[i] != testPage[i]) {
testSuccess = false;
break;
}
}
if (!testSuccess) {
Serial.println("FEHLER: Schreibtest fehlgeschlagen - Daten stimmen nicht überein!");
Serial.print("Geschrieben: ");
for (int i = 0; i < 4; i++) {
Serial.print(testPage[i], HEX); Serial.print(" ");
}
Serial.println();
Serial.print("Gelesen: ");
for (int i = 0; i < 4; i++) {
Serial.print(readBack[i], HEX); Serial.print(" ");
}
Serial.println();
return 0;
}
// Restore original content
Serial.println("Stelle ursprünglichen Inhalt wieder her...");
if (!nfc.ntag2xx_WritePage(10, originalPage)) {
Serial.println("WARNUNG: Konnte ursprünglichen Inhalt nicht wiederherstellen!");
} else {
Serial.println("✓ Ursprünglicher Inhalt wiederhergestellt");
}
Serial.println("✓ Schreibtest erfolgreich - Tag ist voll funktionsfähig");
Serial.println("======================================================");
// STEP 4: NDEF initialization with verification
Serial.println();
Serial.println("=== SCHRITT 4: NDEF-INITIALISIERUNG ===");
if (!initializeNdefStructure()) {
Serial.println("FEHLER: Konnte NDEF-Struktur nicht initialisieren!");
oledShowMessage("NDEF init failed");
vTaskDelay(2000 / portTICK_PERIOD_MS);
return 0;
}
Serial.println("✓ NDEF-Struktur sicher initialisiert");
// Verify NDEF initialization
uint8_t ndefCheck[8];
bool ndefVerified = true;
for (uint8_t page = 4; page < 6; page++) {
if (!nfc.ntag2xx_ReadPage(page, &ndefCheck[(page-4)*4])) {
ndefVerified = false;
break;
}
}
if (ndefVerified) {
Serial.print("NDEF-Header nach Initialisierung: ");
for (int i = 0; i < 8; i++) {
if (ndefCheck[i] < 0x10) Serial.print("0");
Serial.print(ndefCheck[i], HEX);
Serial.print(" ");
}
Serial.println();
}
Serial.println("✓ NDEF-Struktur initialisiert und verifiziert");
Serial.println("==========================================");
// STEP 5: Allow interface to stabilize before major write operation
Serial.println();
Serial.println("=== SCHRITT 5: NFC-INTERFACE STABILISIERUNG ===");
Serial.println("Stabilisiere NFC-Interface vor Hauptschreibvorgang...");
// Give the interface time to fully settle after NDEF initialization
vTaskDelay(200 / portTICK_PERIOD_MS);
// Test interface stability with a simple read
uint8_t stabilityTest[4];
bool interfaceStable = false;
for (int attempts = 0; attempts < 3; attempts++) {
if (nfc.ntag2xx_ReadPage(4, stabilityTest)) {
Serial.print("Interface stability test ");
Serial.print(attempts + 1);
Serial.println("/3: ✓");
interfaceStable = true;
break;
} else {
Serial.print("Interface stability test ");
Serial.print(attempts + 1);
Serial.println("/3: ❌");
vTaskDelay(100 / portTICK_PERIOD_MS);
}
}
if (!interfaceStable) {
Serial.println("FEHLER: NFC-Interface ist nicht stabil genug für Schreibvorgang");
oledShowMessage("NFC Interface unstable");
vTaskDelay(3000 / portTICK_PERIOD_MS);
return 0;
}
Serial.println("✓ NFC-Interface ist stabil - Schreibvorgang kann beginnen");
Serial.println("=========================================================");
// Allocate memory for the complete TLV structure
uint8_t* tlvData = (uint8_t*) malloc(totalTlvSize);
@@ -444,7 +812,8 @@ uint8_t ntag2xx_WriteNDEF(const char *payload) {
uint8_t pageNumber = 4;
uint16_t totalBytes = offset + 1;
Serial.println("Schritt 2: Schreibe neue NDEF-Daten...");
Serial.println();
Serial.println("=== SCHRITT 6: SCHREIBE NEUE NDEF-DATEN ===");
Serial.print("Schreibe ");
Serial.print(totalBytes);
Serial.print(" Bytes in ");
@@ -452,6 +821,13 @@ uint8_t ntag2xx_WriteNDEF(const char *payload) {
Serial.println(" Seiten...");
while (bytesWritten < totalBytes && pageNumber <= maxWritablePage) {
// Additional safety check before writing each page
if (pageNumber > maxWritablePage) {
Serial.print("STOP: Reached maximum writable page ");
Serial.println(maxWritablePage);
break;
}
// Clear page buffer
memset(pageBuffer, 0, 4);
@@ -461,16 +837,98 @@ uint8_t ntag2xx_WriteNDEF(const char *payload) {
// Copy data to page buffer
memcpy(pageBuffer, &tlvData[bytesWritten], bytesToWrite);
// Write page to tag
if (!nfc.ntag2xx_WritePage(pageNumber, pageBuffer)) {
// Write page to tag with retry mechanism
bool writeSuccess = false;
for (int writeAttempt = 0; writeAttempt < 3; writeAttempt++) {
if (nfc.ntag2xx_WritePage(pageNumber, pageBuffer)) {
writeSuccess = true;
break;
} else {
Serial.print("Schreibversuch ");
Serial.print(writeAttempt + 1);
Serial.print("/3 für Seite ");
Serial.print(pageNumber);
Serial.println(" fehlgeschlagen");
if (writeAttempt < 2) {
vTaskDelay(50 / portTICK_PERIOD_MS); // Wait before retry
}
}
}
if (!writeSuccess) {
Serial.print("FEHLER beim Schreiben der Seite ");
Serial.println(pageNumber);
Serial.print("Möglicherweise Page-Limit erreicht für ");
Serial.println(tagType);
Serial.print("Erwartetes Maximum: ");
Serial.println(maxWritablePage);
Serial.print("Tatsächliches Maximum scheint niedriger zu sein!");
// Update max page for future operations
if (pageNumber > 4) {
Serial.print("Setze neues Maximum auf Seite ");
Serial.println(pageNumber - 1);
}
free(tlvData);
return 0;
}
// IMMEDIATE verification after each write - this is critical!
Serial.print("Verifiziere Seite ");
Serial.print(pageNumber);
Serial.print("... ");
uint8_t verifyBuffer[4];
vTaskDelay(20 / portTICK_PERIOD_MS); // Increased delay before verification
// Verification with retry mechanism
bool verifySuccess = false;
for (int verifyAttempt = 0; verifyAttempt < 3; verifyAttempt++) {
if (nfc.ntag2xx_ReadPage(pageNumber, verifyBuffer)) {
bool writeMatches = true;
for (int i = 0; i < bytesToWrite; i++) {
if (verifyBuffer[i] != pageBuffer[i]) {
writeMatches = false;
Serial.println();
Serial.print("VERIFIKATIONSFEHLER bei Byte ");
Serial.print(i);
Serial.print(" - Erwartet: 0x");
Serial.print(pageBuffer[i], HEX);
Serial.print(", Gelesen: 0x");
Serial.println(verifyBuffer[i], HEX);
break;
}
}
if (writeMatches) {
verifySuccess = true;
break;
} else if (verifyAttempt < 2) {
Serial.print("Verifikationsversuch ");
Serial.print(verifyAttempt + 1);
Serial.println("/3 fehlgeschlagen, wiederhole...");
vTaskDelay(30 / portTICK_PERIOD_MS);
}
} else {
Serial.print("Verifikations-Read-Versuch ");
Serial.print(verifyAttempt + 1);
Serial.println("/3 fehlgeschlagen");
if (verifyAttempt < 2) {
vTaskDelay(30 / portTICK_PERIOD_MS);
}
}
}
if (!verifySuccess) {
Serial.println("❌ SCHREIBVORGANG/VERIFIKATION FEHLGESCHLAGEN!");
free(tlvData);
return 0;
} else {
Serial.println("");
}
Serial.print("Seite ");
Serial.print(pageNumber);
Serial.print(" ✓: ");
@@ -485,7 +943,7 @@ uint8_t ntag2xx_WriteNDEF(const char *payload) {
pageNumber++;
yield();
vTaskDelay(5 / portTICK_PERIOD_MS); // Small delay between page writes
vTaskDelay(10 / portTICK_PERIOD_MS); // Slightly increased delay between page writes
}
free(tlvData);
@@ -511,7 +969,58 @@ uint8_t ntag2xx_WriteNDEF(const char *payload) {
Serial.print((bytesWritten * 100) / availableUserData);
Serial.println("%");
Serial.println("✓ Bestehende Daten wurden überschrieben");
// CRITICAL: Allow NFC interface to stabilize after write operation
Serial.println();
Serial.println("=== SCHRITT 7: NFC-INTERFACE STABILISIERUNG NACH SCHREIBVORGANG ===");
Serial.println("Stabilisiere NFC-Interface nach Schreibvorgang...");
// Give the tag and interface time to settle after write operation
vTaskDelay(300 / portTICK_PERIOD_MS); // Increased stabilization time
// Test if the interface is still responsive
uint8_t postWriteTest[4];
bool interfaceResponsive = false;
for (int stabilityAttempt = 0; stabilityAttempt < 5; stabilityAttempt++) {
Serial.print("Post-write interface test ");
Serial.print(stabilityAttempt + 1);
Serial.print("/5... ");
if (nfc.ntag2xx_ReadPage(3, postWriteTest)) { // Read capability container
Serial.println("");
interfaceResponsive = true;
break;
} else {
Serial.println("");
if (stabilityAttempt < 4) {
Serial.println("Warte und versuche Interface zu stabilisieren...");
vTaskDelay(200 / portTICK_PERIOD_MS);
// Try to re-establish communication with a simple tag presence check
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 };
uint8_t uidLength;
bool tagStillPresent = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength, 1000);
Serial.print("Tag presence check: ");
Serial.println(tagStillPresent ? "" : "");
if (!tagStillPresent) {
Serial.println("Tag wurde während/nach Schreibvorgang entfernt!");
break;
}
}
}
}
if (!interfaceResponsive) {
Serial.println("WARNUNG: NFC-Interface reagiert nach Schreibvorgang nicht mehr stabil");
Serial.println("Schreibvorgang war erfolgreich, aber Interface benötigt möglicherweise Reset");
} else {
Serial.println("✓ NFC-Interface ist nach Schreibvorgang stabil");
}
Serial.println("==================================================================");
return 1;
}
@@ -735,7 +1244,7 @@ bool decodeNdefAndReturnJson(const byte* encodedMessage, String uidString) {
}
// Brand Filament not registered to Spoolman
else if ((!doc["sm_id"].is<String>() || (doc["sm_id"].is<String>() && (doc["sm_id"] == "0" || doc["sm_id"] == "")))
&& doc["brand"].is<String>() && doc["artnr"].is<String>())
&& doc["b"].is<String>() && doc["an"].is<String>())
{
doc["sm_id"] = "0"; // Ensure sm_id is set to 0
// If no sm_id is present but the brand is Brand Filament then
@@ -759,6 +1268,216 @@ bool decodeNdefAndReturnJson(const byte* encodedMessage, String uidString) {
return true;
}
bool quickSpoolIdCheck(String uidString) {
// Fast-path: Read NDEF structure to quickly locate and check JSON payload
// This dramatically speeds up known spool recognition
// CRITICAL: Do not execute during write operations!
if (nfcWriteInProgress) {
Serial.println("FAST-PATH: Skipped during write operation");
return false;
}
Serial.println("=== FAST-PATH: Quick sm_id Check ===");
// Read enough pages to cover NDEF header + beginning of payload (pages 4-8 = 20 bytes)
uint8_t ndefData[20];
memset(ndefData, 0, 20);
for (uint8_t page = 4; page < 9; page++) {
if (!nfc.ntag2xx_ReadPage(page, ndefData + (page - 4) * 4)) {
Serial.print("Failed to read page ");
Serial.println(page);
return false; // Fall back to full read
}
}
// Parse NDEF structure to find JSON payload start
Serial.print("Raw NDEF data (first 20 bytes): ");
for (int i = 0; i < 20; i++) {
if (ndefData[i] < 0x10) Serial.print("0");
Serial.print(ndefData[i], HEX);
Serial.print(" ");
}
Serial.println();
// Look for NDEF TLV (0x03) at the beginning
int tlvOffset = -1;
for (int i = 0; i < 8; i++) {
if (ndefData[i] == 0x03) {
tlvOffset = i;
Serial.print("Found NDEF TLV at offset: ");
Serial.println(tlvOffset);
break;
}
}
if (tlvOffset == -1) {
Serial.println("✗ FAST-PATH: No NDEF TLV found");
return false;
}
// Parse NDEF record to find JSON payload
int ndefRecordStart;
if (ndefData[tlvOffset + 1] == 0xFF) {
// Extended length format
ndefRecordStart = tlvOffset + 4;
} else {
// Standard length format
ndefRecordStart = tlvOffset + 2;
}
if (ndefRecordStart >= 20) {
Serial.println("✗ FAST-PATH: NDEF record starts beyond read data");
return false;
}
// Parse NDEF record header
uint8_t recordHeader = ndefData[ndefRecordStart];
uint8_t typeLength = ndefData[ndefRecordStart + 1];
// Calculate payload offset
uint8_t payloadLengthBytes = (recordHeader & 0x10) ? 1 : 4; // SR flag check
uint8_t idLength = (recordHeader & 0x08) ? ndefData[ndefRecordStart + 2 + payloadLengthBytes + typeLength] : 0; // IL flag check
int payloadOffset = ndefRecordStart + 1 + 1 + payloadLengthBytes + typeLength + idLength;
Serial.print("NDEF Record Header: 0x");
Serial.print(recordHeader, HEX);
Serial.print(", Type Length: ");
Serial.print(typeLength);
Serial.print(", Payload offset: ");
Serial.println(payloadOffset);
// Check if payload starts within our read data
if (payloadOffset >= 20) {
Serial.println("✗ FAST-PATH: JSON payload starts beyond quick read data - need more pages");
// Read additional pages to get to JSON payload
uint8_t extraData[16]; // Read 4 more pages
memset(extraData, 0, 16);
for (uint8_t page = 9; page < 13; page++) {
if (!nfc.ntag2xx_ReadPage(page, extraData + (page - 9) * 4)) {
Serial.print("Failed to read additional page ");
Serial.println(page);
return false;
}
}
// Combine data
uint8_t combinedData[36];
memcpy(combinedData, ndefData, 20);
memcpy(combinedData + 20, extraData, 16);
// Extract JSON from combined data
String jsonStart = "";
int jsonStartPos = payloadOffset;
for (int i = 0; i < 36 - payloadOffset && i < 30; i++) {
uint8_t currentByte = combinedData[payloadOffset + i];
if (currentByte >= 32 && currentByte <= 126) {
jsonStart += (char)currentByte;
}
// Stop at first brace to get just the beginning
if (currentByte == '{' && i > 0) break;
}
Serial.print("JSON start from extended read: ");
Serial.println(jsonStart);
// Check for sm_id pattern - look for non-zero sm_id values
if (jsonStart.indexOf("\"sm_id\":\"") >= 0) {
int smIdStart = jsonStart.indexOf("\"sm_id\":\"") + 9;
int smIdEnd = jsonStart.indexOf("\"", smIdStart);
if (smIdEnd > smIdStart && smIdEnd < jsonStart.length()) {
String quickSpoolId = jsonStart.substring(smIdStart, smIdEnd);
Serial.print("Found sm_id in extended read: ");
Serial.println(quickSpoolId);
// Only process if sm_id is not "0" (known spool)
if (quickSpoolId != "0" && quickSpoolId.length() > 0) {
Serial.println("✓ FAST-PATH: Known spool detected!");
// Set as active spool immediately
activeSpoolId = quickSpoolId;
lastSpoolId = activeSpoolId;
oledShowProgressBar(2, octoEnabled?5:4, "Known Spool", "Quick mode");
Serial.println("✓ FAST-PATH SUCCESS: Known spool processed quickly");
return true;
} else {
Serial.println("✗ FAST-PATH: sm_id is 0 - new brand filament, need full read");
return false;
}
}
}
Serial.println("✗ FAST-PATH: No sm_id pattern in extended read");
return false;
}
// Extract JSON payload from the available data
String quickJson = "";
for (int i = payloadOffset; i < 20 && i < payloadOffset + 15; i++) {
uint8_t currentByte = ndefData[i];
if (currentByte >= 32 && currentByte <= 126) {
quickJson += (char)currentByte;
}
}
Serial.print("Quick JSON data: ");
Serial.println(quickJson);
// Look for sm_id pattern in the beginning of JSON - check for known vs new spools
if (quickJson.indexOf("\"sm_id\":\"") >= 0) {
Serial.println("✓ FAST-PATH: sm_id field found");
// Extract sm_id from quick data
int smIdStart = quickJson.indexOf("\"sm_id\":\"") + 9;
int smIdEnd = quickJson.indexOf("\"", smIdStart);
if (smIdEnd > smIdStart && smIdEnd < quickJson.length()) {
String quickSpoolId = quickJson.substring(smIdStart, smIdEnd);
Serial.print("✓ Quick extracted sm_id: ");
Serial.println(quickSpoolId);
// Only process known spools (sm_id != "0") via fast path
if (quickSpoolId != "0" && quickSpoolId.length() > 0) {
Serial.println("✓ FAST-PATH: Known spool detected!");
// Set as active spool immediately
activeSpoolId = quickSpoolId;
lastSpoolId = activeSpoolId;
oledShowProgressBar(2, octoEnabled?5:4, "Known Spool", "Quick mode");
Serial.println("✓ FAST-PATH SUCCESS: Known spool processed quickly");
return true;
} else {
Serial.println("✗ FAST-PATH: sm_id is 0 - new brand filament, need full read");
return false; // sm_id="0" means new brand filament, needs full processing
}
} else {
Serial.println("✗ FAST-PATH: Could not extract complete sm_id value");
return false; // Need full read to get complete sm_id
}
}
// Check for other patterns that require full read
if (quickJson.indexOf("\"location\":\"") >= 0) {
Serial.println("✓ FAST-PATH: Location tag detected");
return false; // Need full read for location processing
}
if (quickJson.indexOf("\"brand\":\"") >= 0) {
Serial.println("✓ FAST-PATH: Brand filament detected - may need full processing");
return false; // Need full read for brand filament creation
}
Serial.println("✗ FAST-PATH: No recognizable pattern - falling back to full read");
return false; // Fall back to full tag reading
}
void writeJsonToTag(void *parameter) {
NfcWriteParameterType* params = (NfcWriteParameterType*)parameter;
@@ -767,12 +1486,11 @@ void writeJsonToTag(void *parameter) {
Serial.println(params->payload);
nfcReaderState = NFC_WRITING;
nfcWriteInProgress = true; // Block high-level tag operations during write
// First request the reading task to be suspended and than wait until it responds
nfcReadingTaskSuspendRequest = true;
while(nfcReadingTaskSuspendState == false){
vTaskDelay(100 / portTICK_PERIOD_MS);
}
// Do NOT suspend the reading task - we need NFC interface for verification
// Just use nfcWriteInProgress to prevent scanning and fast-path operations
Serial.println("NFC Write Task starting - High-level operations blocked, low-level NFC available");
//pauseBambuMqttTask = true;
// aktualisieren der Website wenn sich der Status ändert
@@ -831,13 +1549,80 @@ void writeJsonToTag(void *parameter) {
}else{
oledShowProgressBar(1, 1, "Write Tag", "Done!");
}
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
// CRITICAL: Properly stabilize NFC interface after write operation
Serial.println();
Serial.println("=== POST-WRITE NFC STABILIZATION ===");
// Wait for tag operations to complete
vTaskDelay(500 / portTICK_PERIOD_MS);
// Test tag presence and remove detection
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 };
uint8_t uidLength;
yield();
esp_task_wdt_reset();
while (nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength, 400)) {
int tagRemovalChecks = 0;
Serial.println("Warte bis Tag entfernt wird...");
// Monitor tag presence
while (tagRemovalChecks < 10) {
yield();
}
esp_task_wdt_reset();
bool tagPresent = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength, 500);
if (!tagPresent) {
Serial.println("✓ Tag wurde entfernt - NFC bereit für nächsten Scan");
break;
}
tagRemovalChecks++;
Serial.print("Tag noch vorhanden (");
Serial.print(tagRemovalChecks);
Serial.println("/10)");
vTaskDelay(500 / portTICK_PERIOD_MS);
}
if (tagRemovalChecks >= 10) {
Serial.println("WARNUNG: Tag wurde nicht entfernt - fahre trotzdem fort");
}
// Additional interface stabilization before resuming normal operations
Serial.println("Stabilisiere NFC-Interface für normale Operationen...");
vTaskDelay(200 / portTICK_PERIOD_MS);
// Test if interface is ready for normal scanning
uint8_t interfaceTestBuffer[4];
bool interfaceReady = false;
for (int testAttempt = 0; testAttempt < 3; testAttempt++) {
// Try a simple interface operation (without requiring tag presence)
Serial.print("Interface readiness test ");
Serial.print(testAttempt + 1);
Serial.print("/3... ");
// Use a safe read operation that doesn't depend on tag presence
// This tests if the PN532 chip itself is responsive
uint32_t versiondata = nfc.getFirmwareVersion();
if (versiondata != 0) {
Serial.println("");
interfaceReady = true;
break;
} else {
Serial.println("");
vTaskDelay(100 / portTICK_PERIOD_MS);
}
}
if (!interfaceReady) {
Serial.println("WARNUNG: NFC-Interface reagiert nicht - könnte normale Scans beeinträchtigen");
} else {
Serial.println("✓ NFC-Interface ist bereit für normale Scans");
}
Serial.println("=========================================");
vTaskResume(RfidReaderTask);
vTaskDelay(500 / portTICK_PERIOD_MS);
}
@@ -860,7 +1645,8 @@ void writeJsonToTag(void *parameter) {
sendWriteResult(nullptr, success);
sendNfcData();
nfcReadingTaskSuspendRequest = false;
// Only reset the write protection flag - reading task was never suspended
nfcWriteInProgress = false; // Re-enable high-level tag operations
pauseBambuMqttTask = false;
free(params->payload);
@@ -895,8 +1681,8 @@ void startWriteJsonToTag(const bool isSpoolTag, const char* payload) {
void scanRfidTask(void * parameter) {
Serial.println("RFID Task gestartet");
for(;;) {
// Wenn geschrieben wird Schleife aussetzen
if (nfcReaderState != NFC_WRITING && !nfcReadingTaskSuspendRequest && !booting)
// Skip scanning during write operations, but keep NFC interface active
if (nfcReaderState != NFC_WRITING && !nfcWriteInProgress && !nfcReadingTaskSuspendRequest && !booting)
{
nfcReadingTaskSuspendState = false;
yield();
@@ -938,6 +1724,18 @@ void scanRfidTask(void * parameter) {
if (uidLength == 7)
{
// Try fast-path detection first for known spools
if (quickSpoolIdCheck(uidString)) {
Serial.println("✓ FAST-PATH: Tag processed quickly, skipping full read");
pauseBambuMqttTask = false;
// Set reader back to idle for next scan
nfcReaderState = NFC_READ_SUCCESS;
delay(500); // Small delay before next scan
continue; // Skip full tag reading and continue scan loop
}
Serial.println("Continuing with full tag read after fast-path check");
uint16_t tagSize = readTagSize();
if(tagSize > 0)
{
@@ -1029,8 +1827,17 @@ void scanRfidTask(void * parameter) {
else
{
nfcReadingTaskSuspendState = true;
Serial.println("NFC Reading disabled");
vTaskDelay(1000 / portTICK_PERIOD_MS);
// Different behavior for write protection vs. full suspension
if (nfcWriteInProgress) {
// During write: Just pause scanning, don't disable NFC interface
// Serial.println("NFC Scanning paused during write operation");
vTaskDelay(100 / portTICK_PERIOD_MS); // Shorter delay during write
} else {
// Full suspension requested
Serial.println("NFC Reading disabled");
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}
yield();
}

View File

@@ -16,6 +16,7 @@ typedef enum{
void startNfc();
void scanRfidTask(void * parameter);
void startWriteJsonToTag(const bool isSpoolTag, const char* payload);
bool quickSpoolIdCheck(String uidString);
extern TaskHandle_t RfidReaderTask;
extern String nfcJsonData;
@@ -23,6 +24,7 @@ extern String activeSpoolId;
extern String lastSpoolId;
extern volatile nfcReaderStateType nfcReaderState;
extern volatile bool pauseBambuMqttTask;
extern volatile bool nfcWriteInProgress;
extern bool tagProcessed;

View File

@@ -48,9 +48,6 @@ void scale_loop(void * parameter) {
Serial.println("Scale Loop started");
Serial.println("++++++++++++++++++++++++++++++");
vTaskDelay(pdMS_TO_TICKS(500));
scale_tare_counter = 10; // damit beim Starten der Waage automatisch getart wird
for(;;) {
if (scale.is_ready())
{
@@ -120,12 +117,13 @@ void start_scale(bool touchSensorConnected) {
esp_task_wdt_reset();
}
if (scale.wait_ready_timeout(1000))
{
scale.set_scale(calibrationValue); // this value is obtained by calibrating the scale with known weights; see the README for details
//scale.tare();
while(!scale.is_ready()) {
vTaskDelay(pdMS_TO_TICKS(5000));
}
scale.set_scale(calibrationValue); // this value is obtained by calibrating the scale with known weights; see the README for details
scale.tare();
// Display Gewicht
oledShowWeight(0);