grbl-LPC-CoreXY/nuts_bolts.h
Sonny J ffcc3470a3 Optimized planner re-write. Significantly faster. Full arc support enabled by rotation matrix approach.
- Significant improvements in the planner. Removed or reordered
repetitive and expensive calculations by order of importance:
recalculating unchanged blocks, trig functions [sin(), cos(), tan()],
sqrt(), divides, and multiplications. Blocks long enough for nominal
speed to be guaranteed to be reached ignored by planner. Done by
introducing two uint8_t flags per block. Reduced computational overhead
by an order of magnitude.   - Arc motion generation completely
re-written and optimized. Now runs with acceleration planner. Removed
all but one trig function (atan2) from initialization. Streamlined
computations. Segment target locations generated by vector
transformation and small angle approximation. Arc path correction
implemented for accumulated error of approximation and single precision
calculation of Arduino. Bug fix in message passing.
2011-09-06 19:39:14 -06:00

46 lines
1.5 KiB
C

/*
motion_control.h - cartesian robot controller.
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Modifications Copyright (c) 2011 Sungeun (Sonny) Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef nuts_bolts_h
#define nuts_bolts_h
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#define false 0
#define true 1
#define X_AXIS 0
#define Y_AXIS 1
#define Z_AXIS 2
#define clear_vector(a) memset(a, 0, sizeof(a))
#define clear_vector_double(a) memset(a, 0.0, sizeof(a))
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
// Read a floating point value from a string. Line points to the input buffer, char_counter
// is the indexer pointing to the current character of the line, while double_ptr is
// a pointer to the result variable. Returns true when it succeeds
int read_double(char *line, uint8_t *char_counter, double *double_ptr);
#endif