Sonny Jeon d1037268c8 v1.1c: New sleep mode. Laser mode and other bug fixes.
- New $SLP sleep mode that will disable spindle, coolant, and stepper
enable pins. Allows users to disable their steppers without having to
alter their settings. A reset is required to exit and re-initializes in
alarm state.

- Laser mode wasn’t updating the spindle PWM correctly (effected
spindle speed overrides) and not checking for modal states either.
Fixed both issues.

- While in laser mode, parking motions are ignored, since the power off
delay with the retract motion would burn the material. It will just
turn off and not move. A restore immediately powers up and resumes. No
delays.

- Changing rpm max and min settings did not update the spindle PWM
calculations. Now fixed.

- Increased default planner buffer from 16 to 17 block. It seems to be
stable, but need to monitor this carefully.

- Removed software debounce routine for limit pins. Obsolete.

- Fixed a couple parking motion bugs. One related to restoring
incorrectly and the other the parking rate wasn’t compatible with the
planner structs.

- Fixed a bug caused by refactoring the critical alarms in a recent
push. Soft limits weren’t invoking a critical alarm.

- Updated the documentation with the new sleep feature and added some
more details to the change summary.
2016-10-11 17:07:44 -06:00

205 lines
8.1 KiB
C

/*
serial.c - Low level functions for sending and recieving bytes via the serial port
Part of Grbl
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
#define RX_RING_BUFFER (RX_BUFFER_SIZE+1)
#define TX_RING_BUFFER (TX_BUFFER_SIZE+1)
uint8_t serial_rx_buffer[RX_RING_BUFFER];
uint8_t serial_rx_buffer_head = 0;
volatile uint8_t serial_rx_buffer_tail = 0;
uint8_t serial_tx_buffer[TX_RING_BUFFER];
uint8_t serial_tx_buffer_head = 0;
volatile uint8_t serial_tx_buffer_tail = 0;
// Returns the number of bytes available in the RX serial buffer.
uint8_t serial_get_rx_buffer_available()
{
uint8_t rtail = serial_rx_buffer_tail; // Copy to limit multiple calls to volatile
if (serial_rx_buffer_head >= rtail) { return(RX_BUFFER_SIZE - (serial_rx_buffer_head-rtail)); }
return((rtail-serial_rx_buffer_head-1));
}
// Returns the number of bytes used in the RX serial buffer.
// NOTE: Deprecated. Not used unless classic status reports are enabled in config.h.
uint8_t serial_get_rx_buffer_count()
{
uint8_t rtail = serial_rx_buffer_tail; // Copy to limit multiple calls to volatile
if (serial_rx_buffer_head >= rtail) { return(serial_rx_buffer_head-rtail); }
return (RX_BUFFER_SIZE - (rtail-serial_rx_buffer_head));
}
// Returns the number of bytes used in the TX serial buffer.
// NOTE: Not used except for debugging and ensuring no TX bottlenecks.
uint8_t serial_get_tx_buffer_count()
{
uint8_t ttail = serial_tx_buffer_tail; // Copy to limit multiple calls to volatile
if (serial_tx_buffer_head >= ttail) { return(serial_tx_buffer_head-ttail); }
return (TX_RING_BUFFER - (ttail-serial_tx_buffer_head));
}
void serial_init()
{
// Set baud rate
#if BAUD_RATE < 57600
uint16_t UBRR0_value = ((F_CPU / (8L * BAUD_RATE)) - 1)/2 ;
UCSR0A &= ~(1 << U2X0); // baud doubler off - Only needed on Uno XXX
#else
uint16_t UBRR0_value = ((F_CPU / (4L * BAUD_RATE)) - 1)/2;
UCSR0A |= (1 << U2X0); // baud doubler on for high baud rates, i.e. 115200
#endif
UBRR0H = UBRR0_value >> 8;
UBRR0L = UBRR0_value;
// enable rx, tx, and interrupt on complete reception of a byte
UCSR0B |= (1<<RXEN0 | 1<<TXEN0 | 1<<RXCIE0);
// defaults to 8-bit, no parity, 1 stop bit
}
// Writes one byte to the TX serial buffer. Called by main program.
void serial_write(uint8_t data) {
// Calculate next head
uint8_t next_head = serial_tx_buffer_head + 1;
if (next_head == TX_RING_BUFFER) { next_head = 0; }
// Wait until there is space in the buffer
while (next_head == serial_tx_buffer_tail) {
// TODO: Restructure st_prep_buffer() calls to be executed here during a long print.
if (sys_rt_exec_state & EXEC_RESET) { return; } // Only check for abort to avoid an endless loop.
}
// Store data and advance head
serial_tx_buffer[serial_tx_buffer_head] = data;
serial_tx_buffer_head = next_head;
// Enable Data Register Empty Interrupt to make sure tx-streaming is running
UCSR0B |= (1 << UDRIE0);
}
// Data Register Empty Interrupt handler
ISR(SERIAL_UDRE)
{
uint8_t tail = serial_tx_buffer_tail; // Temporary serial_tx_buffer_tail (to optimize for volatile)
// Send a byte from the buffer
UDR0 = serial_tx_buffer[tail];
// Update tail position
tail++;
if (tail == TX_RING_BUFFER) { tail = 0; }
serial_tx_buffer_tail = tail;
// Turn off Data Register Empty Interrupt to stop tx-streaming if this concludes the transfer
if (tail == serial_tx_buffer_head) { UCSR0B &= ~(1 << UDRIE0); }
}
// Fetches the first byte in the serial read buffer. Called by main program.
uint8_t serial_read()
{
uint8_t tail = serial_rx_buffer_tail; // Temporary serial_rx_buffer_tail (to optimize for volatile)
if (serial_rx_buffer_head == tail) {
return SERIAL_NO_DATA;
} else {
uint8_t data = serial_rx_buffer[tail];
tail++;
if (tail == RX_RING_BUFFER) { tail = 0; }
serial_rx_buffer_tail = tail;
return data;
}
}
ISR(SERIAL_RX)
{
uint8_t data = UDR0;
uint8_t next_head;
// Pick off realtime command characters directly from the serial stream. These characters are
// not passed into the main buffer, but these set system state flag bits for realtime execution.
switch (data) {
case CMD_RESET: mc_reset(); break; // Call motion control reset routine.
case CMD_STATUS_REPORT: system_set_exec_state_flag(EXEC_STATUS_REPORT); break; // Set as true
case CMD_CYCLE_START: system_set_exec_state_flag(EXEC_CYCLE_START); break; // Set as true
case CMD_FEED_HOLD: system_set_exec_state_flag(EXEC_FEED_HOLD); break; // Set as true
default :
if (data > 0x7F) { // Real-time control characters are extended ACSII only.
switch(data) {
case CMD_SAFETY_DOOR: system_set_exec_state_flag(EXEC_SAFETY_DOOR); break; // Set as true
case CMD_JOG_CANCEL:
if (sys.state & STATE_JOG) { // Block all other states from invoking motion cancel.
system_set_exec_state_flag(EXEC_MOTION_CANCEL);
}
break;
#ifdef DEBUG
case CMD_DEBUG_REPORT: {uint8_t sreg = SREG; cli(); bit_true(sys_rt_exec_debug,EXEC_DEBUG_REPORT); SREG = sreg;} break;
#endif
case CMD_FEED_OVR_RESET: system_set_exec_motion_override_flag(EXEC_FEED_OVR_RESET); break;
case CMD_FEED_OVR_COARSE_PLUS: system_set_exec_motion_override_flag(EXEC_FEED_OVR_COARSE_PLUS); break;
case CMD_FEED_OVR_COARSE_MINUS: system_set_exec_motion_override_flag(EXEC_FEED_OVR_COARSE_MINUS); break;
case CMD_FEED_OVR_FINE_PLUS: system_set_exec_motion_override_flag(EXEC_FEED_OVR_FINE_PLUS); break;
case CMD_FEED_OVR_FINE_MINUS: system_set_exec_motion_override_flag(EXEC_FEED_OVR_FINE_MINUS); break;
case CMD_RAPID_OVR_RESET: system_set_exec_motion_override_flag(EXEC_RAPID_OVR_RESET); break;
case CMD_RAPID_OVR_MEDIUM: system_set_exec_motion_override_flag(EXEC_RAPID_OVR_MEDIUM); break;
case CMD_RAPID_OVR_LOW: system_set_exec_motion_override_flag(EXEC_RAPID_OVR_LOW); break;
case CMD_SPINDLE_OVR_RESET: system_set_exec_accessory_override_flag(EXEC_SPINDLE_OVR_RESET); break;
case CMD_SPINDLE_OVR_COARSE_PLUS: system_set_exec_accessory_override_flag(EXEC_SPINDLE_OVR_COARSE_PLUS); break;
case CMD_SPINDLE_OVR_COARSE_MINUS: system_set_exec_accessory_override_flag(EXEC_SPINDLE_OVR_COARSE_MINUS); break;
case CMD_SPINDLE_OVR_FINE_PLUS: system_set_exec_accessory_override_flag(EXEC_SPINDLE_OVR_FINE_PLUS); break;
case CMD_SPINDLE_OVR_FINE_MINUS: system_set_exec_accessory_override_flag(EXEC_SPINDLE_OVR_FINE_MINUS); break;
case CMD_SPINDLE_OVR_STOP: system_set_exec_accessory_override_flag(EXEC_SPINDLE_OVR_STOP); break;
case CMD_COOLANT_FLOOD_OVR_TOGGLE: system_set_exec_accessory_override_flag(EXEC_COOLANT_FLOOD_OVR_TOGGLE); break;
#ifdef ENABLE_M7
case CMD_COOLANT_MIST_OVR_TOGGLE: system_set_exec_accessory_override_flag(EXEC_COOLANT_MIST_OVR_TOGGLE); break;
#endif
}
// Throw away any unfound extended-ASCII character by not passing it to the serial buffer.
} else { // Write character to buffer
next_head = serial_rx_buffer_head + 1;
if (next_head == RX_RING_BUFFER) { next_head = 0; }
// Write data to buffer unless it is full.
if (next_head != serial_rx_buffer_tail) {
serial_rx_buffer[serial_rx_buffer_head] = data;
serial_rx_buffer_head = next_head;
}
}
}
}
void serial_reset_read_buffer()
{
serial_rx_buffer_tail = serial_rx_buffer_head;
}