ed790c9fa2
- Increment to v1.1d due to interface tweaks. - Based on GUI dev feedback, the toggle overrides report was removed and replace with showing “accessory state”. This shows a character if a particular accessory is enabled, like the spindle or flood coolant. These can be directly altered by the toggle overrides, so when they execute, a GUI will be able to observe the state altering as feedback. - Altered the real-time feed rate to show real-time spindle speed as well. It was an over-sight on my part. It’s needed because it’s hard to know what the current spindle speed is when overrides are altering it. Especially during something like a laser cutting job when its important to know how spindle speed overrides are effecting things. - Real-time spindle speed is not shown if VARIABLE_SPINDLE is disabled. The old real-time feed rate data field will show instead. - Compile-time option data is now included in another message immediately following the build info version string, starting with `[OPT:`. A character code follows the data type name with each indicating a particular option enabled or disabled. This will help immensely with debugging Grbl as well as help GUIs know exactly how Grbl was compiled. - These interface changes are detailed in the updated documentation. - Reduced the default planner buffer size from 17 to 16. Needed to free up some memory… - For increasing the serial TX buffer size from 90 to 104 bytes. The addition of real-time spindle speeds and accessory enable data required a bigger buffer. This is to ensure Grbl is performing at optimal levels. - Refactored parts of the spindle and coolant control code to make it more consistent to each other and how it was called. It was a little messy. The changes made it easier to track what each function call was doing based on what was calling it. - Created a couple of new get_state functions for the spindle and coolant. These are called by the accessory state report to look directly at the pin state, rather than track how it was set. This guarantees that the state is reported correctly. - Updated the g-code parser, parking motion, sleep mode, and spindle stop calls to refactored spindle and coolant code. - Added a compile-time option to enable homing individual axes, rather than having only the main homing cycle. The actual use case for this is pretty rare. It’s not recommended you enable this, unless you have a specific application for it. Otherwise, just alter the homing cycle itself. - Refactored the printFloat() function to not show a decimal point if there are no trailing values after it. For example, `1.` now shows `1`. - Fixed an issue regarding spindle speed overrides no being applied to blocks without motions. - Removed the toggle_ovr_mask system variable and replaced with spindle_stop_ovr system variable. Coolant toggles don’t need to be tracked. - Updated README
408 lines
16 KiB
C
408 lines
16 KiB
C
/*
|
|
system.c - Handles system level commands and real-time processes
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2014-2016 Sungeun K. Jeon for Gnea Research LLC
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "grbl.h"
|
|
|
|
|
|
void system_init()
|
|
{
|
|
CONTROL_DDR &= ~(CONTROL_MASK); // Configure as input pins
|
|
#ifdef DISABLE_CONTROL_PIN_PULL_UP
|
|
CONTROL_PORT &= ~(CONTROL_MASK); // Normal low operation. Requires external pull-down.
|
|
#else
|
|
CONTROL_PORT |= CONTROL_MASK; // Enable internal pull-up resistors. Normal high operation.
|
|
#endif
|
|
CONTROL_PCMSK |= CONTROL_MASK; // Enable specific pins of the Pin Change Interrupt
|
|
PCICR |= (1 << CONTROL_INT); // Enable Pin Change Interrupt
|
|
}
|
|
|
|
|
|
// Returns control pin state as a uint8 bitfield. Each bit indicates the input pin state, where
|
|
// triggered is 1 and not triggered is 0. Invert mask is applied. Bitfield organization is
|
|
// defined by the CONTROL_PIN_INDEX in the header file.
|
|
uint8_t system_control_get_state()
|
|
{
|
|
uint8_t control_state = 0;
|
|
uint8_t pin = (CONTROL_PIN & CONTROL_MASK);
|
|
#ifdef INVERT_CONTROL_PIN_MASK
|
|
pin ^= INVERT_CONTROL_PIN_MASK;
|
|
#endif
|
|
if (pin) {
|
|
#ifdef ENABLE_SAFETY_DOOR_INPUT_PIN
|
|
if (bit_isfalse(pin,(1<<CONTROL_SAFETY_DOOR_BIT))) { control_state |= CONTROL_PIN_INDEX_SAFETY_DOOR; }
|
|
#endif
|
|
if (bit_isfalse(pin,(1<<CONTROL_RESET_BIT))) { control_state |= CONTROL_PIN_INDEX_RESET; }
|
|
if (bit_isfalse(pin,(1<<CONTROL_FEED_HOLD_BIT))) { control_state |= CONTROL_PIN_INDEX_FEED_HOLD; }
|
|
if (bit_isfalse(pin,(1<<CONTROL_CYCLE_START_BIT))) { control_state |= CONTROL_PIN_INDEX_CYCLE_START; }
|
|
}
|
|
return(control_state);
|
|
}
|
|
|
|
|
|
// Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets
|
|
// only the realtime command execute variable to have the main program execute these when
|
|
// its ready. This works exactly like the character-based realtime commands when picked off
|
|
// directly from the incoming serial data stream.
|
|
ISR(CONTROL_INT_vect)
|
|
{
|
|
uint8_t pin = system_control_get_state();
|
|
if (pin) {
|
|
if (bit_istrue(pin,CONTROL_PIN_INDEX_RESET)) {
|
|
mc_reset();
|
|
} else if (bit_istrue(pin,CONTROL_PIN_INDEX_CYCLE_START)) {
|
|
bit_true(sys_rt_exec_state, EXEC_CYCLE_START);
|
|
#ifndef ENABLE_SAFETY_DOOR_INPUT_PIN
|
|
} else if (bit_istrue(pin,CONTROL_PIN_INDEX_FEED_HOLD)) {
|
|
bit_true(sys_rt_exec_state, EXEC_FEED_HOLD);
|
|
#else
|
|
} else if (bit_istrue(pin,CONTROL_PIN_INDEX_SAFETY_DOOR)) {
|
|
bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Returns if safety door is ajar(T) or closed(F), based on pin state.
|
|
uint8_t system_check_safety_door_ajar()
|
|
{
|
|
#ifdef ENABLE_SAFETY_DOOR_INPUT_PIN
|
|
return(system_control_get_state() & CONTROL_PIN_INDEX_SAFETY_DOOR);
|
|
#else
|
|
return(false); // Input pin not enabled, so just return that it's closed.
|
|
#endif
|
|
}
|
|
|
|
|
|
// Executes user startup script, if stored.
|
|
void system_execute_startup(char *line)
|
|
{
|
|
uint8_t n;
|
|
for (n=0; n < N_STARTUP_LINE; n++) {
|
|
if (!(settings_read_startup_line(n, line))) {
|
|
line[0] = 0;
|
|
report_execute_startup_message(line,STATUS_SETTING_READ_FAIL);
|
|
} else {
|
|
if (line[0] != 0) {
|
|
uint8_t status_code = gc_execute_line(line);
|
|
report_execute_startup_message(line,status_code);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Directs and executes one line of formatted input from protocol_process. While mostly
|
|
// incoming streaming g-code blocks, this also executes Grbl internal commands, such as
|
|
// settings, initiating the homing cycle, and toggling switch states. This differs from
|
|
// the realtime command module by being susceptible to when Grbl is ready to execute the
|
|
// next line during a cycle, so for switches like block delete, the switch only effects
|
|
// the lines that are processed afterward, not necessarily real-time during a cycle,
|
|
// since there are motions already stored in the buffer. However, this 'lag' should not
|
|
// be an issue, since these commands are not typically used during a cycle.
|
|
uint8_t system_execute_line(char *line)
|
|
{
|
|
uint8_t char_counter = 1;
|
|
uint8_t helper_var = 0; // Helper variable
|
|
float parameter, value;
|
|
switch( line[char_counter] ) {
|
|
case 0 : report_grbl_help(); break;
|
|
case 'J' : // Jogging
|
|
// Execute only if in IDLE or JOG states.
|
|
if (sys.state != STATE_IDLE && sys.state != STATE_JOG) { return(STATUS_IDLE_ERROR); }
|
|
if(line[2] != '=') { return(STATUS_INVALID_STATEMENT); }
|
|
return(gc_execute_line(line)); // NOTE: $J= is ignored inside g-code parser and used to detect jog motions.
|
|
break;
|
|
case '$': case 'G': case 'C': case 'X':
|
|
if ( line[2] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
|
switch( line[1] ) {
|
|
case '$' : // Prints Grbl settings
|
|
if ( sys.state & (STATE_CYCLE | STATE_HOLD) ) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print.
|
|
else { report_grbl_settings(); }
|
|
break;
|
|
case 'G' : // Prints gcode parser state
|
|
// TODO: Move this to realtime commands for GUIs to request this data during suspend-state.
|
|
report_gcode_modes();
|
|
break;
|
|
case 'C' : // Set check g-code mode [IDLE/CHECK]
|
|
// Perform reset when toggling off. Check g-code mode should only work if Grbl
|
|
// is idle and ready, regardless of alarm locks. This is mainly to keep things
|
|
// simple and consistent.
|
|
if ( sys.state == STATE_CHECK_MODE ) {
|
|
mc_reset();
|
|
report_feedback_message(MESSAGE_DISABLED);
|
|
} else {
|
|
if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode.
|
|
sys.state = STATE_CHECK_MODE;
|
|
report_feedback_message(MESSAGE_ENABLED);
|
|
}
|
|
break;
|
|
case 'X' : // Disable alarm lock [ALARM]
|
|
if (sys.state == STATE_ALARM) {
|
|
// Block if safety door is ajar.
|
|
if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); }
|
|
report_feedback_message(MESSAGE_ALARM_UNLOCK);
|
|
sys.state = STATE_IDLE;
|
|
// Don't run startup script. Prevents stored moves in startup from causing accidents.
|
|
} // Otherwise, no effect.
|
|
break;
|
|
}
|
|
break;
|
|
default :
|
|
// Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing)
|
|
if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); }
|
|
switch( line[1] ) {
|
|
case '#' : // Print Grbl NGC parameters
|
|
if ( line[2] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
|
else { report_ngc_parameters(); }
|
|
break;
|
|
case 'H' : // Perform homing cycle [IDLE/ALARM]
|
|
if (bit_isfalse(settings.flags,BITFLAG_HOMING_ENABLE)) {return(STATUS_SETTING_DISABLED); }
|
|
if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); } // Block if safety door is ajar.
|
|
sys.state = STATE_HOMING; // Set system state variable
|
|
if (line[2] == 0) {
|
|
mc_homing_cycle(HOMING_CYCLE_ALL);
|
|
#ifdef HOMING_SINGLE_AXIS_COMMANDS
|
|
} else if (line[3] == 0) {
|
|
switch (line[2]) {
|
|
case 'X': mc_homing_cycle(HOMING_CYCLE_X); break;
|
|
case 'Y': mc_homing_cycle(HOMING_CYCLE_Y); break;
|
|
case 'Z': mc_homing_cycle(HOMING_CYCLE_Z); break;
|
|
default: return(STATUS_INVALID_STATEMENT);
|
|
}
|
|
#endif
|
|
} else { return(STATUS_INVALID_STATEMENT); }
|
|
if (!sys.abort) { // Execute startup scripts after successful homing.
|
|
sys.state = STATE_IDLE; // Set to IDLE when complete.
|
|
st_go_idle(); // Set steppers to the settings idle state before returning.
|
|
if (line[2] == 0) { system_execute_startup(line); }
|
|
}
|
|
break;
|
|
case 'S' : // Puts Grbl to sleep [IDLE/ALARM]
|
|
if ((line[2] != 'L') || (line[3] != 'P') || (line[4] != 0)) { return(STATUS_INVALID_STATEMENT); }
|
|
system_set_exec_state_flag(EXEC_SLEEP); // Set to execute sleep mode immediately
|
|
break;
|
|
case 'I' : // Print or store build info. [IDLE/ALARM]
|
|
if ( line[++char_counter] == 0 ) {
|
|
settings_read_build_info(line);
|
|
report_build_info(line);
|
|
#ifdef ENABLE_BUILD_INFO_WRITE_COMMAND
|
|
} else { // Store startup line [IDLE/ALARM]
|
|
if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
|
|
helper_var = char_counter; // Set helper variable as counter to start of user info line.
|
|
do {
|
|
line[char_counter-helper_var] = line[char_counter];
|
|
} while (line[char_counter++] != 0);
|
|
settings_store_build_info(line);
|
|
#endif
|
|
}
|
|
break;
|
|
case 'R' : // Restore defaults [IDLE/ALARM]
|
|
if ((line[2] != 'S') || (line[3] != 'T') || (line[4] != '=') || (line[6] != 0)) { return(STATUS_INVALID_STATEMENT); }
|
|
switch (line[5]) {
|
|
#ifdef ENABLE_RESTORE_EEPROM_DEFAULT_SETTINGS
|
|
case '$': settings_restore(SETTINGS_RESTORE_DEFAULTS); break;
|
|
#endif
|
|
#ifdef ENABLE_RESTORE_EEPROM_CLEAR_PARAMETERS
|
|
case '#': settings_restore(SETTINGS_RESTORE_PARAMETERS); break;
|
|
#endif
|
|
#ifdef ENABLE_RESTORE_EEPROM_WIPE_ALL
|
|
case '*': settings_restore(SETTINGS_RESTORE_ALL); break;
|
|
#endif
|
|
default: return(STATUS_INVALID_STATEMENT);
|
|
}
|
|
report_feedback_message(MESSAGE_RESTORE_DEFAULTS);
|
|
mc_reset(); // Force reset to ensure settings are initialized correctly.
|
|
break;
|
|
case 'N' : // Startup lines. [IDLE/ALARM]
|
|
if ( line[++char_counter] == 0 ) { // Print startup lines
|
|
for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) {
|
|
if (!(settings_read_startup_line(helper_var, line))) {
|
|
report_status_message(STATUS_SETTING_READ_FAIL);
|
|
} else {
|
|
report_startup_line(helper_var,line);
|
|
}
|
|
}
|
|
break;
|
|
} else { // Store startup line [IDLE Only] Prevents motion during ALARM.
|
|
if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle.
|
|
helper_var = true; // Set helper_var to flag storing method.
|
|
// No break. Continues into default: to read remaining command characters.
|
|
}
|
|
default : // Storing setting methods [IDLE/ALARM]
|
|
if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); }
|
|
if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
|
|
if (helper_var) { // Store startup line
|
|
// Prepare sending gcode block to gcode parser by shifting all characters
|
|
helper_var = char_counter; // Set helper variable as counter to start of gcode block
|
|
do {
|
|
line[char_counter-helper_var] = line[char_counter];
|
|
} while (line[char_counter++] != 0);
|
|
// Execute gcode block to ensure block is valid.
|
|
helper_var = gc_execute_line(line); // Set helper_var to returned status code.
|
|
if (helper_var) { return(helper_var); }
|
|
else {
|
|
helper_var = trunc(parameter); // Set helper_var to int value of parameter
|
|
settings_store_startup_line(helper_var,line);
|
|
}
|
|
} else { // Store global setting.
|
|
if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); }
|
|
if((line[char_counter] != 0) || (parameter > 255)) { return(STATUS_INVALID_STATEMENT); }
|
|
return(settings_store_global_setting((uint8_t)parameter, value));
|
|
}
|
|
}
|
|
}
|
|
return(STATUS_OK); // If '$' command makes it to here, then everything's ok.
|
|
}
|
|
|
|
|
|
|
|
void system_flag_wco_change()
|
|
{
|
|
#ifdef FORCE_BUFFER_SYNC_DURING_WCO_CHANGE
|
|
protocol_buffer_synchronize();
|
|
#endif
|
|
sys.report_wco_counter = REPORT_WCO_REFRESH_BUSY_COUNT;
|
|
}
|
|
|
|
|
|
// Returns machine position of axis 'idx'. Must be sent a 'step' array.
|
|
// NOTE: If motor steps and machine position are not in the same coordinate frame, this function
|
|
// serves as a central place to compute the transformation.
|
|
float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx)
|
|
{
|
|
float pos;
|
|
#ifdef COREXY
|
|
if (idx==X_AXIS) {
|
|
pos = (float)system_convert_corexy_to_x_axis_steps(steps) / settings.steps_per_mm[idx];
|
|
} else if (idx==Y_AXIS) {
|
|
pos = (float)system_convert_corexy_to_y_axis_steps(steps) / settings.steps_per_mm[idx];
|
|
} else {
|
|
pos = steps[idx]/settings.steps_per_mm[idx];
|
|
}
|
|
#else
|
|
pos = steps[idx]/settings.steps_per_mm[idx];
|
|
#endif
|
|
return(pos);
|
|
}
|
|
|
|
|
|
void system_convert_array_steps_to_mpos(float *position, int32_t *steps)
|
|
{
|
|
uint8_t idx;
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
position[idx] = system_convert_axis_steps_to_mpos(steps, idx);
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
// CoreXY calculation only. Returns x or y-axis "steps" based on CoreXY motor steps.
|
|
#ifdef COREXY
|
|
int32_t system_convert_corexy_to_x_axis_steps(int32_t *steps)
|
|
{
|
|
return( (steps[A_MOTOR] + steps[B_MOTOR])/2 );
|
|
}
|
|
int32_t system_convert_corexy_to_y_axis_steps(int32_t *steps)
|
|
{
|
|
return( (steps[A_MOTOR] - steps[B_MOTOR])/2 );
|
|
}
|
|
#endif
|
|
|
|
|
|
// Checks and reports if target array exceeds machine travel limits.
|
|
uint8_t system_check_travel_limits(float *target)
|
|
{
|
|
uint8_t idx;
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
#ifdef HOMING_FORCE_SET_ORIGIN
|
|
// When homing forced set origin is enabled, soft limits checks need to account for directionality.
|
|
// NOTE: max_travel is stored as negative
|
|
if (bit_istrue(settings.homing_dir_mask,bit(idx))) {
|
|
if (target[idx] < 0 || target[idx] > -settings.max_travel[idx]) { return(true); }
|
|
} else {
|
|
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return(true); }
|
|
}
|
|
#else
|
|
// NOTE: max_travel is stored as negative
|
|
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return(true); }
|
|
#endif
|
|
}
|
|
return(false);
|
|
}
|
|
|
|
|
|
// Special handlers for setting and clearing Grbl's real-time execution flags.
|
|
void system_set_exec_state_flag(uint8_t mask) {
|
|
uint8_t sreg = SREG;
|
|
cli();
|
|
sys_rt_exec_state |= (mask);
|
|
SREG = sreg;
|
|
}
|
|
|
|
void system_clear_exec_state_flag(uint8_t mask) {
|
|
uint8_t sreg = SREG;
|
|
cli();
|
|
sys_rt_exec_state &= ~(mask);
|
|
SREG = sreg;
|
|
}
|
|
|
|
void system_set_exec_alarm(uint8_t code) {
|
|
uint8_t sreg = SREG;
|
|
cli();
|
|
sys_rt_exec_alarm = code;
|
|
SREG = sreg;
|
|
}
|
|
|
|
void system_clear_exec_alarm_flag(uint8_t mask) {
|
|
uint8_t sreg = SREG;
|
|
cli();
|
|
sys_rt_exec_alarm &= ~(mask);
|
|
SREG = sreg;
|
|
}
|
|
|
|
void system_set_exec_motion_override_flag(uint8_t mask) {
|
|
uint8_t sreg = SREG;
|
|
cli();
|
|
sys_rt_exec_motion_override |= (mask);
|
|
SREG = sreg;
|
|
}
|
|
|
|
void system_set_exec_accessory_override_flag(uint8_t mask) {
|
|
uint8_t sreg = SREG;
|
|
cli();
|
|
sys_rt_exec_accessory_override |= (mask);
|
|
SREG = sreg;
|
|
}
|
|
|
|
void system_clear_exec_motion_overrides() {
|
|
uint8_t sreg = SREG;
|
|
cli();
|
|
sys_rt_exec_motion_override = 0;
|
|
SREG = sreg;
|
|
}
|
|
|
|
void system_clear_exec_accessory_overrides() {
|
|
uint8_t sreg = SREG;
|
|
cli();
|
|
sys_rt_exec_accessory_override = 0;
|
|
SREG = sreg;
|
|
}
|