567fbf93ed
- G54 work coordinate system support. Up to 6 work coordinate systems (G54-G59) available as a compile-time option. - G10 command added to set work coordinate offsets from machine position. - G92/G92.1 position offsets and cancellation support. Properly follows NIST standard rules with other systems. - G53 absolute override now works correctly with new coordinate systems. - Revamped g-code parser with robust error checking. Providing user feedback with bad commands. Follows NIST standards. - Planner module slightly changed to only expected position movements in terms of machine coordinates only. This was to simplify coordinate system handling, which is done solely by the g-code parser. - Upon grbl system abort, machine position and work positions are retained, while G92 offsets are reset per NIST standards. - Compiler compatibility update for _delay_us(). - Updated README.
47 lines
1.8 KiB
C
47 lines
1.8 KiB
C
/*
|
|
motion_control.h - high level interface for issuing motion commands
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
Copyright (c) 2011-2012 Sungeun K. Jeon
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef motion_control_h
|
|
#define motion_control_h
|
|
|
|
#include <avr/io.h>
|
|
#include "planner.h"
|
|
|
|
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
|
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
|
|
// (1 minute)/feed_rate time.
|
|
void mc_line(double x, double y, double z, double feed_rate, uint8_t invert_feed_rate);
|
|
|
|
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
|
|
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
|
|
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
|
|
// for vector transformation direction.
|
|
void mc_arc(double *position, double *target, double *offset, uint8_t axis_0, uint8_t axis_1,
|
|
uint8_t axis_linear, double feed_rate, uint8_t invert_feed_rate, double radius, uint8_t isclockwise);
|
|
|
|
// Dwell for a specific number of seconds
|
|
void mc_dwell(double seconds);
|
|
|
|
// Send the tool home (not implemented)
|
|
void mc_go_home();
|
|
|
|
#endif
|