grbl-LPC-CoreXY/motion_control.h
Sonny Jeon 03e2ca7cd5 Initial v0.8 ALPHA commit. Features multi-tasking run-time command execution (feed hold, cycle start, reset, status query). Extensive re-structuring of code for future features.
- ALPHA status. - Multitasking ability with run-time command executions
for real-time control and feedback. - Decelerating feed hold and resume
during operation. - System abort/reset, which immediately kills all
movement and re-initializes grbl. - Re-structured grbl to easily allow
for new features: Status reporting, jogging, backlash compensation. (To
be completed in the following releases.) - Resized TX/RX serial buffers
(32/128 bytes) - Increased planner buffer size to 20 blocks. - Updated
documentation.
2011-12-08 18:47:48 -07:00

51 lines
2.0 KiB
C

/*
motion_control.h - high level interface for issuing motion commands
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef motion_control_h
#define motion_control_h
#include <avr/io.h>
#include "planner.h"
// NOTE: Although the following function structurally belongs in this module, there is nothing to do but
// to forward the request to the planner.
#define mc_set_current_position(x, y, z) plan_set_current_position(x, y, z)
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// (1 minute)/feed_rate time.
void mc_line(double x, double y, double z, double feed_rate, uint8_t invert_feed_rate);
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
// for vector transformation direction.
void mc_arc(double *position, double *target, double *offset, uint8_t axis_0, uint8_t axis_1,
uint8_t axis_linear, double feed_rate, uint8_t invert_feed_rate, double radius, uint8_t isclockwise);
// Dwell for a specific number of seconds
void mc_dwell(double seconds);
// Send the tool home (not implemented)
void mc_go_home();
#endif