grbl-LPC-CoreXY/grbl/protocol.h
Sonny Jeon b3a53a4683 v1.0 Beta Release.
- Tons of new stuff in this release, which is fairly stable and well
tested. However, much more is coming soon!

- Real-time parking motion with safety door. When this compile option
is enabled, an opened safety door will cause Grbl to automatically feed
hold, retract, de-energize the spindle/coolant, and parks near Z max.
After the door is closed and resume is commanded, this reverses and the
program continues as if nothing happened. This is also highly
configurable. See config.h for details.

- New spindle max and min rpm ‘$’ settings! This has been requested
often. Grbl will output 5V when commanded to turn on the spindle at its
max rpm, and 0.02V with min rpm. The voltage and the rpm range are
linear to each other. This should help users tweak their settings to
get close to true rpm’s.

- If the new max rpm ‘$’ setting is set = 0 or less than min rpm, the
spindle speed PWM pin will act like a regular on/off spindle enable
pin. On pin D11.

- BEWARE: Your old EEPROM settings will be wiped! The new spindle rpm
settings require a new settings version, so Grbl will automatically
wipe and restore the EEPROM with the new defaults.

- Control pin can now be inverted individually with a
CONTROL_INVERT_MASK in the cpu_map header file. Not typical for users
to need this, but handy to have.

- Fixed bug when Grbl receive too many characters in a line and
overflows. Previously it would respond with an error per overflow
character and another acknowledge upon an EOL character. This broke the
streaming protocol. Now fixed to only respond with an error after an
EOL character.

- Fixed a bug with the safety door during an ALARM mode. You now can’t
home or unlock the axes until the safety door has been closed. This is
for safety reasons (obviously.)

- Tweaked some the Mega2560 cpu_map settings . Increased segment buffer
size and fixed the spindle PWM settings to output at a higher PWM
frequency.

- Generalized the delay function used by G4 delay for use by parking
motion. Allows non-blocking status reports and real-time control during
re-energizing of the spindle and coolant.

- Added spindle rpm max and min defaults to default.h files.

- Added a new print float for rpm values.
2015-08-27 21:37:19 -06:00

59 lines
2.1 KiB
C

/*
protocol.h - controls Grbl execution protocol and procedures
Part of Grbl
Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef protocol_h
#define protocol_h
// Line buffer size from the serial input stream to be executed.
// NOTE: Not a problem except for extreme cases, but the line buffer size can be too small
// and g-code blocks can get truncated. Officially, the g-code standards support up to 256
// characters. In future versions, this will be increased, when we know how much extra
// memory space we can invest into here or we re-write the g-code parser not to have this
// buffer.
#ifndef LINE_BUFFER_SIZE
#define LINE_BUFFER_SIZE 80
#endif
// Starts Grbl main loop. It handles all incoming characters from the serial port and executes
// them as they complete. It is also responsible for finishing the initialization procedures.
void protocol_main_loop();
// Checks and executes a realtime command at various stop points in main program
void protocol_execute_realtime();
void protocol_exec_rt_system();
// Notify the stepper subsystem to start executing the g-code program in buffer.
// void protocol_cycle_start();
// Reinitializes the buffer after a feed hold for a resume.
// void protocol_cycle_reinitialize();
// Initiates a feed hold of the running program
// void protocol_feed_hold();
// Executes the auto cycle feature, if enabled.
void protocol_auto_cycle_start();
// Block until all buffered steps are executed
void protocol_buffer_synchronize();
#endif