grbl-LPC-CoreXY/nuts_bolts.c
Sonny Jeon cc9afdc195 Lots of re-organization and cleaning-up. Some bug fixes.
- Added a new source and header file called system. These files contain
the system commands and variables, as well as all of the system headers
and standard libraries Grbl uses. Centralizing some of the code.

- Re-organized the include headers throughout the source code.

- ENABLE_M7 define was missing from config.h. Now there.

- SPINDLE_MAX_RPM and SPINDLE_MIN_RPM now defined in config.h. No
uncommenting to prevent user issues. Minimum spindle RPM now provides
the lower, near 0V, scale adjustment, i.e. some spindles can go really
slow so why use up our 256 voltage bins for them?

- Remove some persistent variables from coolant and spindle control.
They were redundant.

- Removed a VARIABLE_SPINDLE define in cpu_map.h that shouldn’t have
been there.

- Changed the DEFAULT_ARC_TOLERANCE to 0.002mm to improve arc tracing.
Before we had issues with performance, no longer.

- Fixed a bug with the hard limits and the software debounce feature
enabled. The invert limit pin setting wasn’t honored.

- Fixed a bug with the homing direction mask. Now is like it used to
be. At least for now.

- Re-organized main.c to serve as only as the reset/initialization
routine. Makes things a little bit clearer in terms of execution
procedures.

- Re-organized protocol.c as the overall master control unit for
execution procedures. Not quite there yet, but starting to make a
little more sense in how things are run.

- Removed updating of old settings records. So many new settings have
been added that it’s not worth adding the code to migrate old user
settings.

- Tweaked spindle_control.c a bit and made it more clear and consistent
with other parts of Grbl.

- Tweaked the stepper disable bit code in stepper.c. Requires less
flash memory.
2014-01-10 20:22:10 -07:00

153 lines
4.3 KiB
C

/*
nuts_bolts.c - Shared functions
Part of Grbl
Copyright (c) 2011-2014 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "system.h"
#define MAX_INT_DIGITS 8 // Maximum number of digits in int32 (and float)
// Extracts a floating point value from a string. The following code is based loosely on
// the avr-libc strtod() function by Michael Stumpf and Dmitry Xmelkov and many freely
// available conversion method examples, but has been highly optimized for Grbl. For known
// CNC applications, the typical decimal value is expected to be in the range of E0 to E-4.
// Scientific notation is officially not supported by g-code, and the 'E' character may
// be a g-code word on some CNC systems. So, 'E' notation will not be recognized.
// NOTE: Thanks to Radu-Eosif Mihailescu for identifying the issues with using strtod().
int read_float(char *line, uint8_t *char_counter, float *float_ptr)
{
char *ptr = line + *char_counter;
unsigned char c;
// Grab first character and increment pointer. No spaces assumed in line.
c = *ptr++;
// Capture initial positive/minus character
bool isnegative = false;
if (c == '-') {
isnegative = true;
c = *ptr++;
} else if (c == '+') {
c = *ptr++;
}
// Extract number into fast integer. Track decimal in terms of exponent value.
uint32_t intval = 0;
int8_t exp = 0;
uint8_t ndigit = 0;
bool isdecimal = false;
while(1) {
c -= '0';
if (c <= 9) {
ndigit++;
if (ndigit <= MAX_INT_DIGITS) {
if (isdecimal) { exp--; }
intval = (((intval << 2) + intval) << 1) + c; // intval*10 + c
} else {
if (!(isdecimal)) { exp++; } // Drop overflow digits
}
} else if (c == (('.'-'0') & 0xff) && !(isdecimal)) {
isdecimal = true;
} else {
break;
}
c = *ptr++;
}
// Return if no digits have been read.
if (!ndigit) { return(false); };
// Convert integer into floating point.
float fval;
fval = (float)intval;
// Apply decimal. Should perform no more than two floating point multiplications for the
// expected range of E0 to E-4.
if (fval != 0) {
while (exp <= -2) {
fval *= 0.01;
exp += 2;
}
if (exp < 0) {
fval *= 0.1;
} else if (exp > 0) {
do {
fval *= 10.0;
} while (--exp > 0);
}
}
// Assign floating point value with correct sign.
if (isnegative) {
*float_ptr = -fval;
} else {
*float_ptr = fval;
}
*char_counter = ptr - line - 1; // Set char_counter to next statement
return(true);
}
// Delays variable defined milliseconds. Compiler compatibility fix for _delay_ms(),
// which only accepts constants in future compiler releases.
void delay_ms(uint16_t ms)
{
while ( ms-- ) { _delay_ms(1); }
}
// Delays variable defined microseconds. Compiler compatibility fix for _delay_us(),
// which only accepts constants in future compiler releases. Written to perform more
// efficiently with larger delays, as the counter adds parasitic time in each iteration.
void delay_us(uint32_t us)
{
while (us) {
if (us < 10) {
_delay_us(1);
us--;
} else if (us < 100) {
_delay_us(10);
us -= 10;
} else if (us < 1000) {
_delay_us(100);
us -= 100;
} else {
_delay_ms(1);
us -= 1000;
}
}
}
// Returns direction mask according to Grbl internal axis indexing.
uint8_t get_direction_mask(uint8_t axis_idx)
{
uint8_t axis_mask = 0;
switch( axis_idx ) {
case X_AXIS: axis_mask = (1<<X_DIRECTION_BIT); break;
case Y_AXIS: axis_mask = (1<<Y_DIRECTION_BIT); break;
case Z_AXIS: axis_mask = (1<<Z_DIRECTION_BIT); break;
}
return(axis_mask);
}