grbl-LPC-CoreXY/grbl/main.c
Sonny Jeon c7db1c4546 New configuration options.
- New configuration option at compile-time:
 - Force alarm upon power-up or hard reset. When homing is enabled,
this is already the default behavior. This simply forces this all of
the time.
 - GUI reporting mode. Removes most human-readable strings that GUIs
don’t need. This saves nearly 2KB in flash space that can be used for
other features.
 - Hard limit force state check: In the hard limit pin change ISR, Grbl
by default sets the hard limit alarm upon any pin change to guarantee
the alarm is set. If this option is set, it’ll check the state within
the ISR, but can’t guarantee the pin will be read correctly if the
switch is bouncing. This option makes hard limit behavior a little less
annoying if you have a good buffered switch circuit that removes
bouncing and electronic noise.

- Software debounce bug fix. It was reading the pin incorrectly for the
setting.

- Re-factored some of the ‘$’ settings code.
2015-02-23 18:45:26 -07:00

90 lines
3.2 KiB
C

/*
main.c - An embedded CNC Controller with rs274/ngc (g-code) support
Part of Grbl
Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
// Declare system global variable structure
system_t sys;
int main(void)
{
// Initialize system upon power-up.
serial_init(); // Setup serial baud rate and interrupts
settings_init(); // Load Grbl settings from EEPROM
stepper_init(); // Configure stepper pins and interrupt timers
system_init(); // Configure pinout pins and pin-change interrupt
memset(&sys, 0, sizeof(sys)); // Clear all system variables
sys.abort = true; // Set abort to complete initialization
sei(); // Enable interrupts
// Check for power-up and set system alarm if homing is enabled to force homing cycle
// by setting Grbl's alarm state. Alarm locks out all g-code commands, including the
// startup scripts, but allows access to settings and internal commands. Only a homing
// cycle '$H' or kill alarm locks '$X' will disable the alarm.
// NOTE: The startup script will run after successful completion of the homing cycle, but
// not after disabling the alarm locks. Prevents motion startup blocks from crashing into
// things uncontrollably. Very bad.
#ifdef HOMING_INIT_LOCK
if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) { sys.state = STATE_ALARM; }
#endif
// Force Grbl into an ALARM state upon a power-cycle or hard reset.
#ifdef FORCE_INITIALIZATION_ALARM
sys.state = STATE_ALARM;
#endif
// Grbl initialization loop upon power-up or a system abort. For the latter, all processes
// will return to this loop to be cleanly re-initialized.
for(;;) {
// TODO: Separate configure task that require interrupts to be disabled, especially upon
// a system abort and ensuring any active interrupts are cleanly reset.
// Reset Grbl primary systems.
serial_reset_read_buffer(); // Clear serial read buffer
gc_init(); // Set g-code parser to default state
spindle_init();
coolant_init();
limits_init();
probe_init();
plan_reset(); // Clear block buffer and planner variables
st_reset(); // Clear stepper subsystem variables.
// Sync cleared gcode and planner positions to current system position.
plan_sync_position();
gc_sync_position();
// Reset system variables.
sys.abort = false;
sys.rt_exec_state = 0;
sys.rt_exec_alarm = 0;
sys.suspend = false;
// Start Grbl main loop. Processes program inputs and executes them.
protocol_main_loop();
}
return 0; /* Never reached */
}