379 lines
15 KiB
C
379 lines
15 KiB
C
/*
|
|
motion_control.c - cartesian robot controller.
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc
|
|
interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm'
|
|
and the lecture 'Circle Drawing Algorithms' by Leonard McMillan.
|
|
|
|
http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
|
|
http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html
|
|
*/
|
|
|
|
#include <avr/io.h>
|
|
#include "config.h"
|
|
#include "motion_control.h"
|
|
#include <util/delay.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include "nuts_bolts.h"
|
|
#include "stepper.h"
|
|
#include "serial_protocol.h"
|
|
|
|
#include "wiring_serial.h"
|
|
|
|
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
|
|
|
// Parameters when mode is MC_MODE_ARC
|
|
struct LinearMotionParameters {
|
|
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
|
|
uint16_t feed_rate;
|
|
int32_t target[3], // The target position in absolute steps
|
|
step_count[3], // Absolute steps of travel along each axis
|
|
counter[3], // A counter used in the bresenham algorithm for line plotting
|
|
maximum_steps; // The larges absolute step-count of any axis
|
|
};
|
|
|
|
struct ArcMotionParameters {
|
|
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
|
|
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
|
|
int32_t x, y, target_x, target_y; // current position and target position in the
|
|
// local coordinate system of the arc-generator where [0,0] is the
|
|
// center of the arc.
|
|
int target_direction_x, target_direction_y; // signof(target_x)*angular_direction precalculated for speed
|
|
int32_t error, x2, y2; // error is always == (x**2 + y**2 - radius**2),
|
|
// x2 is always 2*x, y2 is always 2*y
|
|
uint8_t axis_x, axis_y; // maps the arc axes to stepper axes
|
|
int8_t plane_steppers[3]; // A vector with the steppers of axis_x and axis_y set to 1, the remaining 0
|
|
int incomplete; // True if the arc has not reached its target yet
|
|
};
|
|
|
|
/* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to
|
|
read, but lets us initialize the state of the system by just clearing a single, contigous block of memory.
|
|
By overlaying the variables of the different modes in a union we save a few bytes of precious SRAM.
|
|
*/
|
|
struct MotionControlState {
|
|
int8_t mode; // The current operation mode
|
|
int32_t position[3]; // The current position of the tool in absolute steps
|
|
int32_t pace; // Microseconds between each update in the current mode
|
|
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
|
|
union {
|
|
struct LinearMotionParameters linear; // variables used in MC_MODE_LINEAR
|
|
struct ArcMotionParameters arc; // variables used in MC_MODE_ARC
|
|
uint32_t dwell_milliseconds; // variable used in MC_MODE_DWELL
|
|
};
|
|
};
|
|
struct MotionControlState mc;
|
|
|
|
void set_stepper_directions(int8_t *direction);
|
|
inline void step_steppers(uint8_t *enabled);
|
|
inline void step_axis(uint8_t axis);
|
|
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
|
|
|
|
void mc_init()
|
|
{
|
|
// Initialize state variables
|
|
memset(&mc, 0, sizeof(mc));
|
|
}
|
|
|
|
void mc_dwell(uint32_t milliseconds)
|
|
{
|
|
mc.mode = MC_MODE_DWELL;
|
|
mc.dwell_milliseconds = milliseconds;
|
|
}
|
|
|
|
// Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
|
// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement.
|
|
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
|
{
|
|
memset(&mc.linear, 0, sizeof(mc.arc));
|
|
|
|
mc.linear.target[X_AXIS] = x*X_STEPS_PER_MM;
|
|
mc.linear.target[Y_AXIS] = y*Y_STEPS_PER_MM;
|
|
mc.linear.target[Z_AXIS] = z*Z_STEPS_PER_MM;
|
|
|
|
mc.mode = MC_MODE_LINEAR;
|
|
uint8_t axis; // loop variable
|
|
// Determine direction and travel magnitude for each axis
|
|
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
|
mc.linear.step_count[axis] = abs(mc.linear.target[axis] - mc.position[axis]);
|
|
mc.linear.direction[axis] = signof(mc.linear.target[axis] - mc.position[axis]);
|
|
}
|
|
// Find the magnitude of the axis with the longest travel
|
|
mc.linear.maximum_steps = max(mc.linear.step_count[Z_AXIS],
|
|
max(mc.linear.step_count[X_AXIS], mc.linear.step_count[Y_AXIS]));
|
|
// Nothing to do?
|
|
if (mc.linear.maximum_steps == 0)
|
|
{
|
|
mc.mode = MC_MODE_AT_REST;
|
|
return;
|
|
}
|
|
// Set up a neat counter for each axis
|
|
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
|
mc.linear.counter[axis] = -mc.linear.maximum_steps/2;
|
|
}
|
|
// Set our direction pins
|
|
set_stepper_directions(mc.linear.direction);
|
|
// Calculate the microseconds we need to wait between each step to achieve the desired feed rate
|
|
if (invert_feed_rate) {
|
|
mc.pace =
|
|
(feed_rate*1000000)/mc.linear.maximum_steps;
|
|
} else {
|
|
// Ask old Phytagoras to estimate how many mm our next move is going to take us:
|
|
double millimeters_to_travel =
|
|
sqrt(pow(X_STEPS_PER_MM*mc.linear.step_count[X_AXIS],2) +
|
|
pow(Y_STEPS_PER_MM*mc.linear.step_count[Y_AXIS],2) +
|
|
pow(Z_STEPS_PER_MM*mc.linear.step_count[Z_AXIS],2));
|
|
// Calculate the microseconds between steps that we should wait in order to travel the
|
|
// designated amount of millimeters in the amount of steps we are going to generate
|
|
mc.pace =
|
|
((millimeters_to_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / mc.linear.maximum_steps;
|
|
}
|
|
}
|
|
|
|
void execute_linear_motion()
|
|
{
|
|
// Flags to keep track of which axes to step
|
|
uint8_t step[3];
|
|
uint8_t axis; // loop variable
|
|
|
|
while(mc.mode) {
|
|
// Trace the line
|
|
clear_vector(step);
|
|
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
|
|
if (mc.linear.target[axis] != mc.position[axis])
|
|
{
|
|
mc.linear.counter[axis] += mc.linear.step_count[axis];
|
|
if (mc.linear.counter[axis] > 0)
|
|
{
|
|
step[axis] = true;
|
|
mc.linear.counter[axis] -= mc.linear.maximum_steps;
|
|
mc.position[axis] += mc.linear.direction[axis];
|
|
}
|
|
}
|
|
}
|
|
if (step[X_AXIS] | step[Y_AXIS] | step[Z_AXIS]) {
|
|
step_steppers(step);
|
|
} else {
|
|
mc.mode = MC_MODE_AT_REST;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
|
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
|
// circle in millimeters. axis_1 and axis_2 selects the plane in tool space.
|
|
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
|
|
void mc_arc(double theta, double angular_travel, double radius, int axis_1, int axis_2, double feed_rate)
|
|
{
|
|
memset(&mc.arc, 0, sizeof(mc.arc));
|
|
uint32_t radius_steps = round(radius*X_STEPS_PER_MM);
|
|
if(radius_steps == 0) { return; }
|
|
mc.mode = MC_MODE_ARC;
|
|
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
|
|
mc.arc.angular_direction = signof(angular_travel);
|
|
// Calculate the initial position and target position in the local coordinate system of the arc
|
|
mc.arc.x = round(sin(theta)*radius_steps);
|
|
mc.arc.y = round(cos(theta)*radius_steps);
|
|
mc.arc.target_x = trunc(sin(theta+angular_travel)*radius_steps);
|
|
mc.arc.target_y = trunc(cos(theta+angular_travel)*radius_steps);
|
|
// Precalculate these values to optimize target detection
|
|
mc.arc.target_direction_x = signof(mc.arc.target_x)*mc.arc.angular_direction;
|
|
mc.arc.target_direction_y = signof(mc.arc.target_y)*mc.arc.angular_direction;
|
|
// The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error
|
|
// <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we
|
|
// are exactly on top of the arc.
|
|
mc.arc.error = mc.arc.x*mc.arc.x + mc.arc.y*mc.arc.y - radius_steps*radius_steps;
|
|
// Because the error-value moves in steps of (+/-)2x+1 and (+/-)2y+1 we save a couple of multiplications
|
|
// by keeping track of the doubles of the arc coordinates at all times.
|
|
mc.arc.x2 = 2*mc.arc.x;
|
|
mc.arc.y2 = 2*mc.arc.y;
|
|
|
|
// Set up a vector with the steppers we are going to use tracing the plane of this arc
|
|
mc.arc.plane_steppers[axis_1] = 1;
|
|
mc.arc.plane_steppers[axis_2] = 1;
|
|
// And map the local coordinate system of the arc onto the tool axes of the selected plane
|
|
mc.arc.axis_x = axis_1;
|
|
mc.arc.axis_y = axis_2;
|
|
// The amount of steppings performed while tracing a full circle is equal to the sum of sides in a
|
|
// square inscribed in the circle. We use this to estimate the amount of steps as if this arc was a full circle:
|
|
uint32_t steps_in_half_circle = round(radius_steps * 4 * (1/sqrt(2)));
|
|
// We then calculate the millimeters of travel along the circumference of that same full circle
|
|
double millimeters_half_circumference = radius*M_PI;
|
|
// Then we calculate the microseconds between each step as if we will trace the full circle.
|
|
// It doesn't matter what fraction of the circle we are actuallyt going to trace. The pace is the same.
|
|
mc.pace =
|
|
((millimeters_half_circumference * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / steps_in_half_circle;
|
|
mc.arc.incomplete = true;
|
|
}
|
|
|
|
#define check_arc_target \
|
|
if ((mc.arc.x * mc.arc.target_direction_y >= \
|
|
mc.arc.target_x * mc.arc.target_direction_y) && \
|
|
(mc.arc.y * mc.arc.target_direction_x <= \
|
|
mc.arc.target_y * mc.arc.target_direction_x)) \
|
|
{ if ((signof(mc.arc.x) == signof(mc.arc.target_x)) && (signof(mc.arc.y) == signof(mc.arc.target_y))) \
|
|
{ mc.arc.incomplete = false; } }
|
|
|
|
// Internal method used by execute_arc to trace horizontally in the general direction provided by dx and dy
|
|
void step_arc_along_x(int8_t dx, int8_t dy)
|
|
{
|
|
uint32_t diagonal_error;
|
|
mc.arc.x+=dx;
|
|
mc.arc.error += 1+mc.arc.x2*dx;
|
|
mc.arc.x2 += 2*dx;
|
|
diagonal_error = mc.arc.error + 1 + mc.arc.y2*dy;
|
|
if(abs(mc.arc.error) >= abs(diagonal_error)) {
|
|
mc.arc.y += dy;
|
|
mc.arc.y2 += 2*dy;
|
|
mc.arc.error = diagonal_error;
|
|
step_steppers(mc.arc.plane_steppers); // step diagonal
|
|
} else {
|
|
step_axis(mc.arc.axis_x); // step straight
|
|
}
|
|
check_arc_target;
|
|
}
|
|
|
|
// Internal method used by execute_arc to trace vertically in the general direction provided by dx and dy
|
|
void step_arc_along_y(int8_t dx, int8_t dy)
|
|
{
|
|
uint32_t diagonal_error;
|
|
mc.arc.y+=dy;
|
|
mc.arc.error += 1+mc.arc.y2*dy;
|
|
mc.arc.y2 += 2*dy;
|
|
diagonal_error = mc.arc.error + 1 + mc.arc.x2*dx;
|
|
if(abs(mc.arc.error) >= abs(diagonal_error)) {
|
|
mc.arc.x += dx;
|
|
mc.arc.x2 += 2*dx;
|
|
mc.arc.error = diagonal_error;
|
|
step_steppers(mc.arc.plane_steppers); // step diagonal
|
|
} else {
|
|
step_axis(mc.arc.axis_y); // step straight
|
|
}
|
|
check_arc_target;
|
|
}
|
|
|
|
// Will trace the configured arc until the target is reached.
|
|
void execute_arc()
|
|
{
|
|
uint32_t start_x = mc.arc.x;
|
|
uint32_t start_y = mc.arc.y;
|
|
int dx, dy; // Trace directions
|
|
|
|
// mc.mode is set to 0 (MC_MODE_AT_REST) when target is reached
|
|
while(mc.arc.incomplete)
|
|
{
|
|
dx = (mc.arc.y!=0) ? signof(mc.arc.y) * mc.arc.angular_direction : -signof(mc.arc.x);
|
|
dy = (mc.arc.x!=0) ? -signof(mc.arc.x) * mc.arc.angular_direction : -signof(mc.arc.y);
|
|
|
|
// Take dx and dy which are local to the arc being generated and map them on to the
|
|
// selected tool-space-axes for the current arc.
|
|
mc.arc.direction[mc.arc.axis_x] = dx;
|
|
mc.arc.direction[mc.arc.axis_y] = dy;
|
|
set_stepper_directions(mc.arc.direction);
|
|
|
|
if (abs(mc.arc.x)<abs(mc.arc.y)) {
|
|
step_arc_along_x(dx,dy);
|
|
} else {
|
|
step_arc_along_y(dx,dy);
|
|
}
|
|
}
|
|
|
|
// Update the tool position to the new actual position
|
|
mc.position[mc.arc.axis_x] += mc.arc.x-start_x;
|
|
mc.position[mc.arc.axis_y] += mc.arc.y-start_y;
|
|
mc.mode = MC_MODE_AT_REST;
|
|
}
|
|
|
|
void mc_go_home()
|
|
{
|
|
mc.mode = MC_MODE_HOME;
|
|
}
|
|
|
|
void execute_go_home()
|
|
{
|
|
st_go_home();
|
|
st_synchronize();
|
|
clear_vector(mc.position); // By definition this is location [0, 0, 0]
|
|
mc.mode = MC_MODE_AT_REST;
|
|
}
|
|
|
|
void mc_execute() {
|
|
if (mc.mode != MC_MODE_AT_REST) {
|
|
st_buffer_pace(mc.pace);
|
|
sp_send_execution_marker();
|
|
while(mc.mode) { // Loop because one task might start another task
|
|
switch(mc.mode) {
|
|
case MC_MODE_AT_REST: break;
|
|
case MC_MODE_DWELL: st_synchronize(); _delay_ms(mc.dwell_milliseconds); mc.mode = MC_MODE_AT_REST; break;
|
|
case MC_MODE_LINEAR: execute_linear_motion(); break;
|
|
case MC_MODE_ARC: execute_arc(); break;
|
|
case MC_MODE_HOME: execute_go_home(); break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int mc_status()
|
|
{
|
|
return(mc.mode);
|
|
}
|
|
|
|
// Set the direction pins for the stepper motors according to the provided vector.
|
|
// direction is an array of three 8 bit integers representing the direction of
|
|
// each motor. The values should be -1 (reverse), 0 or 1 (forward).
|
|
void set_stepper_directions(int8_t *direction)
|
|
{
|
|
/* Sorry about this convoluted code! It uses the fact that bit 7 of each direction
|
|
int is set when the direction == -1, but is 0 when direction is forward. This
|
|
way we can generate the whole direction bit-mask without doing any comparisions
|
|
or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry.
|
|
*/
|
|
mc.direction_bits = (
|
|
((direction[X_AXIS]&0x80)>>(7-X_DIRECTION_BIT)) |
|
|
((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) |
|
|
((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT)));
|
|
}
|
|
|
|
// Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one
|
|
// stepper motor in the order X, Y, Z. Set the bytes of the steppers you want to step to
|
|
// 1, and the rest to 0.
|
|
inline void step_steppers(uint8_t *enabled)
|
|
{
|
|
st_buffer_step(mc.direction_bits | (enabled[X_AXIS]<<X_STEP_BIT) |
|
|
(enabled[Y_AXIS]<<Y_STEP_BIT) | (enabled[Z_AXIS]<<Z_STEP_BIT));
|
|
}
|
|
|
|
// Step only one motor
|
|
inline void step_axis(uint8_t axis)
|
|
{
|
|
switch (axis) {
|
|
case X_AXIS: st_buffer_step(mc.direction_bits | (1<<X_STEP_BIT)); break;
|
|
case Y_AXIS: st_buffer_step(mc.direction_bits | (1<<Y_STEP_BIT)); break;
|
|
case Z_AXIS: st_buffer_step(mc.direction_bits | (1<<Z_STEP_BIT)); break;
|
|
}
|
|
}
|
|
|
|
// Wait until all operations are completed
|
|
void mc_wait()
|
|
{
|
|
st_synchronize();
|
|
}
|
|
|