grbl-LPC-CoreXY/grbl/motion_control.h
Sonny Jeon b753c542c7 v1.1e: New laser features. G-code parser refactoring. CoreXY homing fix.
- Increment to v1.1e due to new laser features.

- After several discussions with some prominent laser people, a few
tweaks to the new laser mode has been installed.

- LASER: M3 behaves in a constant power mode.

- LASER: M4 behaves in a dynamic power mode, where the laser power is
automatically adjusted based on how fast Grbl is moving relative to the
programmed feed rate. This is the same as the  CONSTANT_POWER_PER_RATE
config.h option in the last version. NOTE: When not in motion in M4,
Grbl automatically turns off the laser. Again, it only operates while
moving!

- LASER: Only G1, G2, and G3 motion modes will turn on the laser. So,
this means that G0, G80 motion modes will always keep the laser
disabled. No matter if M3/M4 are active!

- LASER: A spindle stop override is automatically invoked when a laser
is put in a feed hold. This behavior may be disabled by a config.h
option.

- Lots of little tweaks to the g-code parser to help streamline it a
bit. It should no effect how it operates. Generally just added a parser
flag to track and execute certain scenarios a little more clearly.

- Jog motions now allow line numbers to be passed to it and will be
displayed in the status reports.

- Fixed a CoreXY homing bug.

- Fixed an issue when $13 is changed, WCO isn’t sent immediately.

- Altered how spindle PWM is set in the stepper ISR. Updated on a step
segment basis now. May need to change this back if there are any
oddities from doing this.

- Updated some documentation. Clarified why M0 no longer showing up in
$G and why a `1.` floating point values are shown with no decimals,
like so `1`.
2016-12-03 18:02:45 -07:00

64 lines
2.5 KiB
C

/*
motion_control.h - high level interface for issuing motion commands
Part of Grbl
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef motion_control_h
#define motion_control_h
// System motion commands must have a line number of zero.
#define HOMING_CYCLE_LINE_NUMBER 0
#define PARKING_MOTION_LINE_NUMBER 0
#define HOMING_CYCLE_ALL 0 // Must be zero.
#define HOMING_CYCLE_X bit(X_AXIS)
#define HOMING_CYCLE_Y bit(Y_AXIS)
#define HOMING_CYCLE_Z bit(Z_AXIS)
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// (1 minute)/feed_rate time.
void mc_line(float *target, plan_line_data_t *pl_data);
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
// the direction of helical travel, radius == circle radius, is_clockwise_arc boolean. Used
// for vector transformation direction.
void mc_arc(float *target, plan_line_data_t *pl_data, float *position, float *offset, float radius,
uint8_t axis_0, uint8_t axis_1, uint8_t axis_linear, uint8_t is_clockwise_arc);
// Dwell for a specific number of seconds
void mc_dwell(float seconds);
// Perform homing cycle to locate machine zero. Requires limit switches.
void mc_homing_cycle(uint8_t cycle_mask);
// Perform tool length probe cycle. Requires probe switch.
uint8_t mc_probe_cycle(float *target, plan_line_data_t *pl_data, uint8_t parser_flags);
// Plans and executes the single special motion case for parking. Independent of main planner buffer.
void mc_parking_motion(float *parking_target, plan_line_data_t *pl_data);
// Performs system reset. If in motion state, kills all motion and sets system alarm.
void mc_reset();
#endif