b753c542c7
- Increment to v1.1e due to new laser features. - After several discussions with some prominent laser people, a few tweaks to the new laser mode has been installed. - LASER: M3 behaves in a constant power mode. - LASER: M4 behaves in a dynamic power mode, where the laser power is automatically adjusted based on how fast Grbl is moving relative to the programmed feed rate. This is the same as the CONSTANT_POWER_PER_RATE config.h option in the last version. NOTE: When not in motion in M4, Grbl automatically turns off the laser. Again, it only operates while moving! - LASER: Only G1, G2, and G3 motion modes will turn on the laser. So, this means that G0, G80 motion modes will always keep the laser disabled. No matter if M3/M4 are active! - LASER: A spindle stop override is automatically invoked when a laser is put in a feed hold. This behavior may be disabled by a config.h option. - Lots of little tweaks to the g-code parser to help streamline it a bit. It should no effect how it operates. Generally just added a parser flag to track and execute certain scenarios a little more clearly. - Jog motions now allow line numbers to be passed to it and will be displayed in the status reports. - Fixed a CoreXY homing bug. - Fixed an issue when $13 is changed, WCO isn’t sent immediately. - Altered how spindle PWM is set in the stepper ISR. Updated on a step segment basis now. May need to change this back if there are any oddities from doing this. - Updated some documentation. Clarified why M0 no longer showing up in $G and why a `1.` floating point values are shown with no decimals, like so `1`.
747 lines
36 KiB
C
747 lines
36 KiB
C
/*
|
|
protocol.c - controls Grbl execution protocol and procedures
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "grbl.h"
|
|
|
|
// Define line flags. Includes comment type tracking and line overflow detection.
|
|
#define LINE_FLAG_OVERFLOW bit(0)
|
|
#define LINE_FLAG_COMMENT_PARENTHESES bit(1)
|
|
#define LINE_FLAG_COMMENT_SEMICOLON bit(2)
|
|
|
|
|
|
static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated.
|
|
|
|
static void protocol_exec_rt_suspend();
|
|
|
|
|
|
/*
|
|
GRBL PRIMARY LOOP:
|
|
*/
|
|
void protocol_main_loop()
|
|
{
|
|
// Perform some machine checks to make sure everything is good to go.
|
|
#ifdef CHECK_LIMITS_AT_INIT
|
|
if (bit_istrue(settings.flags, BITFLAG_HARD_LIMIT_ENABLE)) {
|
|
if (limits_get_state()) {
|
|
sys.state = STATE_ALARM; // Ensure alarm state is active.
|
|
report_feedback_message(MESSAGE_CHECK_LIMITS);
|
|
}
|
|
}
|
|
#endif
|
|
// Check for and report alarm state after a reset, error, or an initial power up.
|
|
// NOTE: Sleep mode disables the stepper drivers and position can't be guaranteed.
|
|
// Re-initialize the sleep state as an ALARM mode to ensure user homes or acknowledges.
|
|
if (sys.state & (STATE_ALARM | STATE_SLEEP)) {
|
|
report_feedback_message(MESSAGE_ALARM_LOCK);
|
|
sys.state = STATE_ALARM; // Ensure alarm state is set.
|
|
} else {
|
|
// Check if the safety door is open.
|
|
sys.state = STATE_IDLE;
|
|
if (system_check_safety_door_ajar()) {
|
|
bit_true(sys_rt_exec_state, EXEC_SAFETY_DOOR);
|
|
protocol_execute_realtime(); // Enter safety door mode. Should return as IDLE state.
|
|
}
|
|
// All systems go!
|
|
system_execute_startup(line); // Execute startup script.
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------------
|
|
// Primary loop! Upon a system abort, this exits back to main() to reset the system.
|
|
// This is also where Grbl idles while waiting for something to do.
|
|
// ---------------------------------------------------------------------------------
|
|
|
|
uint8_t line_flags = 0;
|
|
uint8_t char_counter = 0;
|
|
uint8_t c;
|
|
for (;;) {
|
|
|
|
// Process one line of incoming serial data, as the data becomes available. Performs an
|
|
// initial filtering by removing spaces and comments and capitalizing all letters.
|
|
while((c = serial_read()) != SERIAL_NO_DATA) {
|
|
if ((c == '\n') || (c == '\r')) { // End of line reached
|
|
|
|
protocol_execute_realtime(); // Runtime command check point.
|
|
if (sys.abort) { return; } // Bail to calling function upon system abort
|
|
|
|
line[char_counter] = 0; // Set string termination character.
|
|
#ifdef REPORT_ECHO_LINE_RECEIVED
|
|
report_echo_line_received(line);
|
|
#endif
|
|
|
|
// Direct and execute one line of formatted input, and report status of execution.
|
|
if (line_flags & LINE_FLAG_OVERFLOW) {
|
|
// Report line overflow error.
|
|
report_status_message(STATUS_OVERFLOW);
|
|
} else if (line[0] == 0) {
|
|
// Empty or comment line. For syncing purposes.
|
|
report_status_message(STATUS_OK);
|
|
} else if (line[0] == '$') {
|
|
// Grbl '$' system command
|
|
report_status_message(system_execute_line(line));
|
|
} else if (sys.state & (STATE_ALARM | STATE_JOG)) {
|
|
// Everything else is gcode. Block if in alarm or jog mode.
|
|
report_status_message(STATUS_SYSTEM_GC_LOCK);
|
|
} else {
|
|
// Parse and execute g-code block.
|
|
report_status_message(gc_execute_line(line));
|
|
}
|
|
|
|
// Reset tracking data for next line.
|
|
line_flags = 0;
|
|
char_counter = 0;
|
|
|
|
} else {
|
|
|
|
if (line_flags) {
|
|
// Throw away all (except EOL) comment characters and overflow characters.
|
|
if (c == ')') {
|
|
// End of '()' comment. Resume line allowed.
|
|
if (line_flags & LINE_FLAG_COMMENT_PARENTHESES) { line_flags &= ~(LINE_FLAG_COMMENT_PARENTHESES); }
|
|
}
|
|
} else {
|
|
if (c <= ' ') {
|
|
// Throw away whitepace and control characters
|
|
} else if (c == '/') {
|
|
// Block delete NOT SUPPORTED. Ignore character.
|
|
// NOTE: If supported, would simply need to check the system if block delete is enabled.
|
|
} else if (c == '(') {
|
|
// Enable comments flag and ignore all characters until ')' or EOL.
|
|
// NOTE: This doesn't follow the NIST definition exactly, but is good enough for now.
|
|
// In the future, we could simply remove the items within the comments, but retain the
|
|
// comment control characters, so that the g-code parser can error-check it.
|
|
line_flags |= LINE_FLAG_COMMENT_PARENTHESES;
|
|
} else if (c == ';') {
|
|
// NOTE: ';' comment to EOL is a LinuxCNC definition. Not NIST.
|
|
line_flags |= LINE_FLAG_COMMENT_SEMICOLON;
|
|
// TODO: Install '%' feature
|
|
// } else if (c == '%') {
|
|
// Program start-end percent sign NOT SUPPORTED.
|
|
// NOTE: This maybe installed to tell Grbl when a program is running vs manual input,
|
|
// where, during a program, the system auto-cycle start will continue to execute
|
|
// everything until the next '%' sign. This will help fix resuming issues with certain
|
|
// functions that empty the planner buffer to execute its task on-time.
|
|
} else if (char_counter >= (LINE_BUFFER_SIZE-1)) {
|
|
// Detect line buffer overflow and set flag.
|
|
line_flags |= LINE_FLAG_OVERFLOW;
|
|
} else if (c >= 'a' && c <= 'z') { // Upcase lowercase
|
|
line[char_counter++] = c-'a'+'A';
|
|
} else {
|
|
line[char_counter++] = c;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// If there are no more characters in the serial read buffer to be processed and executed,
|
|
// this indicates that g-code streaming has either filled the planner buffer or has
|
|
// completed. In either case, auto-cycle start, if enabled, any queued moves.
|
|
protocol_auto_cycle_start();
|
|
|
|
protocol_execute_realtime(); // Runtime command check point.
|
|
if (sys.abort) { return; } // Bail to main() program loop to reset system.
|
|
}
|
|
|
|
return; /* Never reached */
|
|
}
|
|
|
|
|
|
// Block until all buffered steps are executed or in a cycle state. Works with feed hold
|
|
// during a synchronize call, if it should happen. Also, waits for clean cycle end.
|
|
void protocol_buffer_synchronize()
|
|
{
|
|
// If system is queued, ensure cycle resumes if the auto start flag is present.
|
|
protocol_auto_cycle_start();
|
|
do {
|
|
protocol_execute_realtime(); // Check and execute run-time commands
|
|
if (sys.abort) { return; } // Check for system abort
|
|
} while (plan_get_current_block() || (sys.state == STATE_CYCLE));
|
|
}
|
|
|
|
|
|
// Auto-cycle start triggers when there is a motion ready to execute and if the main program is not
|
|
// actively parsing commands.
|
|
// NOTE: This function is called from the main loop, buffer sync, and mc_line() only and executes
|
|
// when one of these conditions exist respectively: There are no more blocks sent (i.e. streaming
|
|
// is finished, single commands), a command that needs to wait for the motions in the buffer to
|
|
// execute calls a buffer sync, or the planner buffer is full and ready to go.
|
|
void protocol_auto_cycle_start()
|
|
{
|
|
if (plan_get_current_block() != NULL) { // Check if there are any blocks in the buffer.
|
|
system_set_exec_state_flag(EXEC_CYCLE_START); // If so, execute them!
|
|
}
|
|
}
|
|
|
|
|
|
// This function is the general interface to Grbl's real-time command execution system. It is called
|
|
// from various check points in the main program, primarily where there may be a while loop waiting
|
|
// for a buffer to clear space or any point where the execution time from the last check point may
|
|
// be more than a fraction of a second. This is a way to execute realtime commands asynchronously
|
|
// (aka multitasking) with grbl's g-code parsing and planning functions. This function also serves
|
|
// as an interface for the interrupts to set the system realtime flags, where only the main program
|
|
// handles them, removing the need to define more computationally-expensive volatile variables. This
|
|
// also provides a controlled way to execute certain tasks without having two or more instances of
|
|
// the same task, such as the planner recalculating the buffer upon a feedhold or overrides.
|
|
// NOTE: The sys_rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts,
|
|
// limit switches, or the main program.
|
|
void protocol_execute_realtime()
|
|
{
|
|
protocol_exec_rt_system();
|
|
if (sys.suspend) { protocol_exec_rt_suspend(); }
|
|
}
|
|
|
|
|
|
// Executes run-time commands, when required. This function primarily operates as Grbl's state
|
|
// machine and controls the various real-time features Grbl has to offer.
|
|
// NOTE: Do not alter this unless you know exactly what you are doing!
|
|
void protocol_exec_rt_system()
|
|
{
|
|
uint8_t rt_exec; // Temp variable to avoid calling volatile multiple times.
|
|
rt_exec = sys_rt_exec_alarm; // Copy volatile sys_rt_exec_alarm.
|
|
if (rt_exec) { // Enter only if any bit flag is true
|
|
// System alarm. Everything has shutdown by something that has gone severely wrong. Report
|
|
// the source of the error to the user. If critical, Grbl disables by entering an infinite
|
|
// loop until system reset/abort.
|
|
sys.state = STATE_ALARM; // Set system alarm state
|
|
report_alarm_message(rt_exec);
|
|
// Halt everything upon a critical event flag. Currently hard and soft limits flag this.
|
|
if ((rt_exec == EXEC_ALARM_HARD_LIMIT) || (rt_exec == EXEC_ALARM_SOFT_LIMIT)) {
|
|
report_feedback_message(MESSAGE_CRITICAL_EVENT);
|
|
system_clear_exec_state_flag(EXEC_RESET); // Disable any existing reset
|
|
do {
|
|
// Block everything, except reset and status reports, until user issues reset or power
|
|
// cycles. Hard limits typically occur while unattended or not paying attention. Gives
|
|
// the user and a GUI time to do what is needed before resetting, like killing the
|
|
// incoming stream. The same could be said about soft limits. While the position is not
|
|
// lost, continued streaming could cause a serious crash if by chance it gets executed.
|
|
} while (bit_isfalse(sys_rt_exec_state,EXEC_RESET));
|
|
}
|
|
system_clear_exec_alarm_flag(0xFF); // Clear all alarm flags
|
|
}
|
|
|
|
rt_exec = sys_rt_exec_state; // Copy volatile sys_rt_exec_state.
|
|
if (rt_exec) {
|
|
|
|
// Execute system abort.
|
|
if (rt_exec & EXEC_RESET) {
|
|
sys.abort = true; // Only place this is set true.
|
|
return; // Nothing else to do but exit.
|
|
}
|
|
|
|
// Execute and serial print status
|
|
if (rt_exec & EXEC_STATUS_REPORT) {
|
|
report_realtime_status();
|
|
system_clear_exec_state_flag(EXEC_STATUS_REPORT);
|
|
}
|
|
|
|
// NOTE: Once hold is initiated, the system immediately enters a suspend state to block all
|
|
// main program processes until either reset or resumed. This ensures a hold completes safely.
|
|
if (rt_exec & (EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR | EXEC_SLEEP)) {
|
|
|
|
// State check for allowable states for hold methods.
|
|
if (!(sys.state & (STATE_ALARM | STATE_CHECK_MODE))) {
|
|
|
|
// If in CYCLE or JOG states, immediately initiate a motion HOLD.
|
|
if (sys.state & (STATE_CYCLE | STATE_JOG)) {
|
|
if (!(sys.suspend & (SUSPEND_MOTION_CANCEL | SUSPEND_JOG_CANCEL))) { // Block, if already holding.
|
|
st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration.
|
|
sys.step_control = STEP_CONTROL_EXECUTE_HOLD; // Initiate suspend state with active flag.
|
|
if (sys.state == STATE_JOG) { // Jog cancelled upon any hold event, except for sleeping.
|
|
if (!(rt_exec & EXEC_SLEEP)) { sys.suspend |= SUSPEND_JOG_CANCEL; }
|
|
}
|
|
}
|
|
}
|
|
// If IDLE, Grbl is not in motion. Simply indicate suspend state and hold is complete.
|
|
if (sys.state == STATE_IDLE) { sys.suspend = SUSPEND_HOLD_COMPLETE; }
|
|
|
|
// Execute and flag a motion cancel with deceleration and return to idle. Used primarily by probing cycle
|
|
// to halt and cancel the remainder of the motion.
|
|
if (rt_exec & EXEC_MOTION_CANCEL) {
|
|
// MOTION_CANCEL only occurs during a CYCLE, but a HOLD and SAFETY_DOOR may been initiated beforehand
|
|
// to hold the CYCLE. Motion cancel is valid for a single planner block motion only, while jog cancel
|
|
// will handle and clear multiple planner block motions.
|
|
if (!(sys.state & STATE_JOG)) { sys.suspend |= SUSPEND_MOTION_CANCEL; } // NOTE: State is STATE_CYCLE.
|
|
}
|
|
|
|
// Execute a feed hold with deceleration, if required. Then, suspend system.
|
|
if (rt_exec & EXEC_FEED_HOLD) {
|
|
// Block SAFETY_DOOR, JOG, and SLEEP states from changing to HOLD state.
|
|
if (!(sys.state & (STATE_SAFETY_DOOR | STATE_JOG | STATE_SLEEP))) { sys.state = STATE_HOLD; }
|
|
}
|
|
|
|
// Execute a safety door stop with a feed hold and disable spindle/coolant.
|
|
// NOTE: Safety door differs from feed holds by stopping everything no matter state, disables powered
|
|
// devices (spindle/coolant), and blocks resuming until switch is re-engaged.
|
|
if (rt_exec & EXEC_SAFETY_DOOR) {
|
|
report_feedback_message(MESSAGE_SAFETY_DOOR_AJAR);
|
|
// If jogging, block safety door methods until jog cancel is complete. Just flag that it happened.
|
|
if (!(sys.suspend & SUSPEND_JOG_CANCEL)) {
|
|
// Check if the safety re-opened during a restore parking motion only. Ignore if
|
|
// already retracting, parked or in sleep state.
|
|
if (sys.state == STATE_SAFETY_DOOR) {
|
|
if (sys.suspend & SUSPEND_INITIATE_RESTORE) { // Actively restoring
|
|
#ifdef PARKING_ENABLE
|
|
// Set hold and reset appropriate control flags to restart parking sequence.
|
|
if (sys.step_control & STEP_CONTROL_EXECUTE_SYS_MOTION) {
|
|
st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration.
|
|
sys.step_control = (STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION);
|
|
sys.suspend &= ~(SUSPEND_HOLD_COMPLETE);
|
|
} // else NO_MOTION is active.
|
|
#endif
|
|
sys.suspend &= ~(SUSPEND_RETRACT_COMPLETE | SUSPEND_INITIATE_RESTORE | SUSPEND_RESTORE_COMPLETE);
|
|
sys.suspend |= SUSPEND_RESTART_RETRACT;
|
|
}
|
|
}
|
|
if (sys.state != STATE_SLEEP) { sys.state = STATE_SAFETY_DOOR; }
|
|
}
|
|
// NOTE: This flag doesn't change when the door closes, unlike sys.state. Ensures any parking motions
|
|
// are executed if the door switch closes and the state returns to HOLD.
|
|
sys.suspend |= SUSPEND_SAFETY_DOOR_AJAR;
|
|
}
|
|
|
|
}
|
|
|
|
if (rt_exec & EXEC_SLEEP) {
|
|
if (sys.state == STATE_ALARM) { sys.suspend |= (SUSPEND_RETRACT_COMPLETE|SUSPEND_HOLD_COMPLETE); }
|
|
sys.state = STATE_SLEEP;
|
|
}
|
|
|
|
system_clear_exec_state_flag((EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR | EXEC_SLEEP));
|
|
}
|
|
|
|
// Execute a cycle start by starting the stepper interrupt to begin executing the blocks in queue.
|
|
if (rt_exec & EXEC_CYCLE_START) {
|
|
// Block if called at same time as the hold commands: feed hold, motion cancel, and safety door.
|
|
// Ensures auto-cycle-start doesn't resume a hold without an explicit user-input.
|
|
if (!(rt_exec & (EXEC_FEED_HOLD | EXEC_MOTION_CANCEL | EXEC_SAFETY_DOOR))) {
|
|
// Resume door state when parking motion has retracted and door has been closed.
|
|
if ((sys.state == STATE_SAFETY_DOOR) && !(sys.suspend & SUSPEND_SAFETY_DOOR_AJAR)) {
|
|
if (sys.suspend & SUSPEND_RESTORE_COMPLETE) {
|
|
sys.state = STATE_IDLE; // Set to IDLE to immediately resume the cycle.
|
|
} else if (sys.suspend & SUSPEND_RETRACT_COMPLETE) {
|
|
// Flag to re-energize powered components and restore original position, if disabled by SAFETY_DOOR.
|
|
// NOTE: For a safety door to resume, the switch must be closed, as indicated by HOLD state, and
|
|
// the retraction execution is complete, which implies the initial feed hold is not active. To
|
|
// restore normal operation, the restore procedures must be initiated by the following flag. Once,
|
|
// they are complete, it will call CYCLE_START automatically to resume and exit the suspend.
|
|
sys.suspend |= SUSPEND_INITIATE_RESTORE;
|
|
}
|
|
}
|
|
// Cycle start only when IDLE or when a hold is complete and ready to resume.
|
|
if ((sys.state == STATE_IDLE) || ((sys.state & STATE_HOLD) && (sys.suspend & SUSPEND_HOLD_COMPLETE))) {
|
|
if (sys.state == STATE_HOLD && sys.spindle_stop_ovr) {
|
|
sys.spindle_stop_ovr |= SPINDLE_STOP_OVR_RESTORE_CYCLE; // Set to restore in suspend routine and cycle start after.
|
|
} else {
|
|
// Start cycle only if queued motions exist in planner buffer and the motion is not canceled.
|
|
sys.step_control = STEP_CONTROL_NORMAL_OP; // Restore step control to normal operation
|
|
if (plan_get_current_block() && bit_isfalse(sys.suspend,SUSPEND_MOTION_CANCEL)) {
|
|
sys.suspend = SUSPEND_DISABLE; // Break suspend state.
|
|
sys.state = STATE_CYCLE;
|
|
st_prep_buffer(); // Initialize step segment buffer before beginning cycle.
|
|
st_wake_up();
|
|
} else { // Otherwise, do nothing. Set and resume IDLE state.
|
|
sys.suspend = SUSPEND_DISABLE; // Break suspend state.
|
|
sys.state = STATE_IDLE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
system_clear_exec_state_flag(EXEC_CYCLE_START);
|
|
}
|
|
|
|
if (rt_exec & EXEC_CYCLE_STOP) {
|
|
// Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by
|
|
// realtime command execution in the main program, ensuring that the planner re-plans safely.
|
|
// NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper
|
|
// cycle reinitializations. The stepper path should continue exactly as if nothing has happened.
|
|
// NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes.
|
|
if ((sys.state & (STATE_HOLD|STATE_SAFETY_DOOR|STATE_SLEEP)) && !(sys.soft_limit) && !(sys.suspend & SUSPEND_JOG_CANCEL)) {
|
|
// Hold complete. Set to indicate ready to resume. Remain in HOLD or DOOR states until user
|
|
// has issued a resume command or reset.
|
|
plan_cycle_reinitialize();
|
|
if (sys.step_control & STEP_CONTROL_EXECUTE_HOLD) { sys.suspend |= SUSPEND_HOLD_COMPLETE; }
|
|
bit_false(sys.step_control,(STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION));
|
|
} else {
|
|
// Motion complete. Includes CYCLE/JOG/HOMING states and jog cancel/motion cancel/soft limit events.
|
|
// NOTE: Motion and jog cancel both immediately return to idle after the hold completes.
|
|
if (sys.suspend & SUSPEND_JOG_CANCEL) { // For jog cancel, flush buffers and sync positions.
|
|
sys.step_control = STEP_CONTROL_NORMAL_OP;
|
|
plan_reset();
|
|
st_reset();
|
|
gc_sync_position();
|
|
plan_sync_position();
|
|
}
|
|
if (sys.suspend & SUSPEND_SAFETY_DOOR_AJAR) { // Only occurs when safety door opens during jog.
|
|
sys.suspend &= ~(SUSPEND_JOG_CANCEL);
|
|
sys.suspend |= SUSPEND_HOLD_COMPLETE;
|
|
sys.state = STATE_SAFETY_DOOR;
|
|
} else {
|
|
sys.suspend = SUSPEND_DISABLE;
|
|
sys.state = STATE_IDLE;
|
|
}
|
|
}
|
|
system_clear_exec_state_flag(EXEC_CYCLE_STOP);
|
|
}
|
|
}
|
|
|
|
// Execute overrides.
|
|
rt_exec = sys_rt_exec_motion_override; // Copy volatile sys_rt_exec_motion_override
|
|
if (rt_exec) {
|
|
system_clear_exec_motion_overrides(); // Clear all motion override flags.
|
|
|
|
uint8_t new_f_override = sys.f_override;
|
|
if (rt_exec & EXEC_FEED_OVR_RESET) { new_f_override = DEFAULT_FEED_OVERRIDE; }
|
|
if (rt_exec & EXEC_FEED_OVR_COARSE_PLUS) { new_f_override += FEED_OVERRIDE_COARSE_INCREMENT; }
|
|
if (rt_exec & EXEC_FEED_OVR_COARSE_MINUS) { new_f_override -= FEED_OVERRIDE_COARSE_INCREMENT; }
|
|
if (rt_exec & EXEC_FEED_OVR_FINE_PLUS) { new_f_override += FEED_OVERRIDE_FINE_INCREMENT; }
|
|
if (rt_exec & EXEC_FEED_OVR_FINE_MINUS) { new_f_override -= FEED_OVERRIDE_FINE_INCREMENT; }
|
|
new_f_override = min(new_f_override,MAX_FEED_RATE_OVERRIDE);
|
|
new_f_override = max(new_f_override,MIN_FEED_RATE_OVERRIDE);
|
|
|
|
uint8_t new_r_override = sys.r_override;
|
|
if (rt_exec & EXEC_RAPID_OVR_RESET) { new_r_override = DEFAULT_RAPID_OVERRIDE; }
|
|
if (rt_exec & EXEC_RAPID_OVR_MEDIUM) { new_r_override = RAPID_OVERRIDE_MEDIUM; }
|
|
if (rt_exec & EXEC_RAPID_OVR_LOW) { new_r_override = RAPID_OVERRIDE_LOW; }
|
|
|
|
if ((new_f_override != sys.f_override) || (new_r_override != sys.r_override)) {
|
|
sys.f_override = new_f_override;
|
|
sys.r_override = new_r_override;
|
|
sys.report_ovr_counter = 0; // Set to report change immediately
|
|
plan_update_velocity_profile_parameters();
|
|
plan_cycle_reinitialize();
|
|
}
|
|
}
|
|
|
|
rt_exec = sys_rt_exec_accessory_override;
|
|
if (rt_exec) {
|
|
system_clear_exec_accessory_overrides(); // Clear all accessory override flags.
|
|
|
|
// NOTE: Unlike motion overrides, spindle overrides do not require a planner reinitialization.
|
|
uint8_t last_s_override = sys.spindle_speed_ovr;
|
|
if (rt_exec & EXEC_SPINDLE_OVR_RESET) { last_s_override = DEFAULT_SPINDLE_SPEED_OVERRIDE; }
|
|
if (rt_exec & EXEC_SPINDLE_OVR_COARSE_PLUS) { last_s_override += SPINDLE_OVERRIDE_COARSE_INCREMENT; }
|
|
if (rt_exec & EXEC_SPINDLE_OVR_COARSE_MINUS) { last_s_override -= SPINDLE_OVERRIDE_COARSE_INCREMENT; }
|
|
if (rt_exec & EXEC_SPINDLE_OVR_FINE_PLUS) { last_s_override += SPINDLE_OVERRIDE_FINE_INCREMENT; }
|
|
if (rt_exec & EXEC_SPINDLE_OVR_FINE_MINUS) { last_s_override -= SPINDLE_OVERRIDE_FINE_INCREMENT; }
|
|
last_s_override = min(last_s_override,MAX_SPINDLE_SPEED_OVERRIDE);
|
|
last_s_override = max(last_s_override,MIN_SPINDLE_SPEED_OVERRIDE);
|
|
|
|
if (last_s_override != sys.spindle_speed_ovr) {
|
|
bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM);
|
|
sys.spindle_speed_ovr = last_s_override;
|
|
sys.report_ovr_counter = 0; // Set to report change immediately
|
|
}
|
|
|
|
if (rt_exec & EXEC_SPINDLE_OVR_STOP) {
|
|
// Spindle stop override allowed only while in HOLD state.
|
|
// NOTE: Report counters are set in spindle_set_state() when spindle stop is executed.
|
|
if (sys.state == STATE_HOLD) {
|
|
if (!(sys.spindle_stop_ovr)) { sys.spindle_stop_ovr = SPINDLE_STOP_OVR_INITIATE; }
|
|
else if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_ENABLED) { sys.spindle_stop_ovr |= SPINDLE_STOP_OVR_RESTORE; }
|
|
}
|
|
}
|
|
|
|
// NOTE: Since coolant state always performs a planner sync whenever it changes, the current
|
|
// run state can be determined by checking the parser state.
|
|
if (rt_exec & (EXEC_COOLANT_FLOOD_OVR_TOGGLE | EXEC_COOLANT_MIST_OVR_TOGGLE)) {
|
|
if ((sys.state == STATE_IDLE) || (sys.state & (STATE_CYCLE | STATE_HOLD))) {
|
|
uint8_t coolant_state = gc_state.modal.coolant;
|
|
#ifdef ENABLE_M7
|
|
if (rt_exec & EXEC_COOLANT_MIST_OVR_TOGGLE) {
|
|
if (coolant_state & COOLANT_MIST_ENABLE) { bit_false(coolant_state,COOLANT_MIST_ENABLE); }
|
|
else { coolant_state |= COOLANT_MIST_ENABLE; }
|
|
}
|
|
if (rt_exec & EXEC_COOLANT_FLOOD_OVR_TOGGLE) {
|
|
if (coolant_state & COOLANT_FLOOD_ENABLE) { bit_false(coolant_state,COOLANT_FLOOD_ENABLE); }
|
|
else { coolant_state |= COOLANT_FLOOD_ENABLE; }
|
|
}
|
|
#else
|
|
if (coolant_state & COOLANT_FLOOD_ENABLE) { bit_false(coolant_state,COOLANT_FLOOD_ENABLE); }
|
|
else { coolant_state |= COOLANT_FLOOD_ENABLE; }
|
|
#endif
|
|
coolant_set_state(coolant_state); // Report counter set in coolant_set_state().
|
|
gc_state.modal.coolant = coolant_state;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (sys_rt_exec_debug) {
|
|
report_realtime_debug();
|
|
sys_rt_exec_debug = 0;
|
|
}
|
|
#endif
|
|
|
|
// Reload step segment buffer
|
|
if (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_SAFETY_DOOR | STATE_HOMING | STATE_SLEEP| STATE_JOG)) {
|
|
st_prep_buffer();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// Handles Grbl system suspend procedures, such as feed hold, safety door, and parking motion.
|
|
// The system will enter this loop, create local variables for suspend tasks, and return to
|
|
// whatever function that invoked the suspend, such that Grbl resumes normal operation.
|
|
// This function is written in a way to promote custom parking motions. Simply use this as a
|
|
// template
|
|
static void protocol_exec_rt_suspend()
|
|
{
|
|
#ifdef PARKING_ENABLE
|
|
// Declare and initialize parking local variables
|
|
float restore_target[N_AXIS];
|
|
float parking_target[N_AXIS];
|
|
float retract_waypoint = PARKING_PULLOUT_INCREMENT;
|
|
plan_line_data_t plan_data;
|
|
plan_line_data_t *pl_data = &plan_data;
|
|
memset(pl_data,0,sizeof(plan_line_data_t));
|
|
pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE);
|
|
#ifdef USE_LINE_NUMBERS
|
|
pl_data->line_number = PARKING_MOTION_LINE_NUMBER;
|
|
#endif
|
|
#endif
|
|
|
|
plan_block_t *block = plan_get_current_block();
|
|
uint8_t restore_condition;
|
|
#ifdef VARIABLE_SPINDLE
|
|
float restore_spindle_speed;
|
|
if (block == NULL) {
|
|
restore_condition = (gc_state.modal.spindle | gc_state.modal.coolant);
|
|
restore_spindle_speed = gc_state.spindle_speed;
|
|
} else {
|
|
restore_condition = block->condition;
|
|
restore_spindle_speed = block->spindle_speed;
|
|
}
|
|
#ifdef DISABLE_LASER_DURING_HOLD
|
|
if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) {
|
|
system_set_exec_accessory_override_flag(EXEC_SPINDLE_OVR_STOP);
|
|
}
|
|
#endif
|
|
#else
|
|
if (block == NULL) { restore_condition = (gc_state.modal.spindle | gc_state.modal.coolant); }
|
|
else { restore_condition = block->condition; }
|
|
#endif
|
|
|
|
while (sys.suspend) {
|
|
|
|
if (sys.abort) { return; }
|
|
|
|
// Block until initial hold is complete and the machine has stopped motion.
|
|
if (sys.suspend & SUSPEND_HOLD_COMPLETE) {
|
|
|
|
// Parking manager. Handles de/re-energizing, switch state checks, and parking motions for
|
|
// the safety door and sleep states.
|
|
if (sys.state & (STATE_SAFETY_DOOR | STATE_SLEEP)) {
|
|
|
|
// Handles retraction motions and de-energizing.
|
|
if (bit_isfalse(sys.suspend,SUSPEND_RETRACT_COMPLETE)) {
|
|
|
|
// Ensure any prior spindle stop override is disabled at start of safety door routine.
|
|
sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED;
|
|
|
|
#ifndef PARKING_ENABLE
|
|
|
|
spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize
|
|
coolant_set_state(COOLANT_DISABLE); // De-energize
|
|
|
|
#else
|
|
|
|
// Get current position and store restore location and spindle retract waypoint.
|
|
system_convert_array_steps_to_mpos(parking_target,sys_position);
|
|
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
|
|
memcpy(restore_target,parking_target,sizeof(parking_target));
|
|
retract_waypoint += restore_target[PARKING_AXIS];
|
|
retract_waypoint = min(retract_waypoint,PARKING_TARGET);
|
|
}
|
|
|
|
// Execute slow pull-out parking retract motion. Parking requires homing enabled, the
|
|
// current location not exceeding the parking target location, and laser mode disabled.
|
|
// NOTE: State is will remain DOOR, until the de-energizing and retract is complete.
|
|
if ((bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) &&
|
|
(parking_target[PARKING_AXIS] < PARKING_TARGET) &&
|
|
bit_isfalse(settings.flags,BITFLAG_LASER_MODE)) {
|
|
|
|
// Retract spindle by pullout distance. Ensure retraction motion moves away from
|
|
// the workpiece and waypoint motion doesn't exceed the parking target location.
|
|
if (parking_target[PARKING_AXIS] < retract_waypoint) {
|
|
parking_target[PARKING_AXIS] = retract_waypoint;
|
|
pl_data->feed_rate = PARKING_PULLOUT_RATE;
|
|
pl_data->condition |= (restore_condition & PL_COND_ACCESSORY_MASK); // Retain accessory state
|
|
pl_data->spindle_speed = restore_spindle_speed;
|
|
mc_parking_motion(parking_target, pl_data);
|
|
}
|
|
|
|
// NOTE: Clear accessory state after retract and after an aborted restore motion.
|
|
pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE);
|
|
pl_data->spindle_speed = 0.0;
|
|
spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize
|
|
coolant_set_state(COOLANT_DISABLE); // De-energize
|
|
|
|
// Execute fast parking retract motion to parking target location.
|
|
if (parking_target[PARKING_AXIS] < PARKING_TARGET) {
|
|
parking_target[PARKING_AXIS] = PARKING_TARGET;
|
|
pl_data->feed_rate = PARKING_RATE;
|
|
mc_parking_motion(parking_target, pl_data);
|
|
}
|
|
|
|
} else {
|
|
|
|
// Parking motion not possible. Just disable the spindle and coolant.
|
|
// NOTE: Laser mode does not start a parking motion to ensure the laser stops immediately.
|
|
spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize
|
|
coolant_set_state(COOLANT_DISABLE); // De-energize
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
sys.suspend &= ~(SUSPEND_RESTART_RETRACT);
|
|
sys.suspend |= SUSPEND_RETRACT_COMPLETE;
|
|
|
|
} else {
|
|
|
|
|
|
if (sys.state == STATE_SLEEP) {
|
|
report_feedback_message(MESSAGE_SLEEP_MODE);
|
|
// Spindle and coolant should already be stopped, but do it again just to be sure.
|
|
spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize
|
|
coolant_set_state(COOLANT_DISABLE); // De-energize
|
|
st_go_idle(); // Disable steppers
|
|
while (!(sys.abort)) { protocol_exec_rt_system(); } // Do nothing until reset.
|
|
return; // Abort received. Return to re-initialize.
|
|
}
|
|
|
|
// Allows resuming from parking/safety door. Actively checks if safety door is closed and ready to resume.
|
|
if (sys.state == STATE_SAFETY_DOOR) {
|
|
if (!(system_check_safety_door_ajar())) {
|
|
sys.suspend &= ~(SUSPEND_SAFETY_DOOR_AJAR); // Reset door ajar flag to denote ready to resume.
|
|
}
|
|
}
|
|
|
|
// Handles parking restore and safety door resume.
|
|
if (sys.suspend & SUSPEND_INITIATE_RESTORE) {
|
|
|
|
#ifdef PARKING_ENABLE
|
|
// Execute fast restore motion to the pull-out position. Parking requires homing enabled.
|
|
// NOTE: State is will remain DOOR, until the de-energizing and retract is complete.
|
|
if ((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) {
|
|
// Check to ensure the motion doesn't move below pull-out position.
|
|
if (parking_target[PARKING_AXIS] <= PARKING_TARGET) {
|
|
parking_target[PARKING_AXIS] = retract_waypoint;
|
|
pl_data->feed_rate = PARKING_RATE;
|
|
mc_parking_motion(parking_target, pl_data);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Delayed Tasks: Restart spindle and coolant, delay to power-up, then resume cycle.
|
|
if (gc_state.modal.spindle != SPINDLE_DISABLE) {
|
|
// Block if safety door re-opened during prior restore actions.
|
|
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
|
|
if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) {
|
|
// When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts.
|
|
bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM);
|
|
} else {
|
|
spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed);
|
|
delay_sec(SAFETY_DOOR_SPINDLE_DELAY, DELAY_MODE_SYS_SUSPEND);
|
|
}
|
|
}
|
|
}
|
|
if (gc_state.modal.coolant != COOLANT_DISABLE) {
|
|
// Block if safety door re-opened during prior restore actions.
|
|
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
|
|
// NOTE: Laser mode will honor this delay. An exhaust system is often controlled by this pin.
|
|
coolant_set_state((restore_condition & (PL_COND_FLAG_COOLANT_FLOOD | PL_COND_FLAG_COOLANT_FLOOD)));
|
|
delay_sec(SAFETY_DOOR_COOLANT_DELAY, DELAY_MODE_SYS_SUSPEND);
|
|
}
|
|
}
|
|
|
|
#ifdef PARKING_ENABLE
|
|
// Execute slow plunge motion from pull-out position to resume position.
|
|
if ((settings.flags & (BITFLAG_HOMING_ENABLE|BITFLAG_LASER_MODE)) == BITFLAG_HOMING_ENABLE) {
|
|
// Block if safety door re-opened during prior restore actions.
|
|
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
|
|
// Regardless if the retract parking motion was a valid/safe motion or not, the
|
|
// restore parking motion should logically be valid, either by returning to the
|
|
// original position through valid machine space or by not moving at all.
|
|
pl_data->feed_rate = PARKING_PULLOUT_RATE;
|
|
pl_data->condition |= (restore_condition & PL_COND_ACCESSORY_MASK); // Restore accessory state
|
|
pl_data->spindle_speed = restore_spindle_speed;
|
|
mc_parking_motion(restore_target, pl_data);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (bit_isfalse(sys.suspend,SUSPEND_RESTART_RETRACT)) {
|
|
sys.suspend |= SUSPEND_RESTORE_COMPLETE;
|
|
system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program.
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
} else {
|
|
|
|
// Feed hold manager. Controls spindle stop override states.
|
|
// NOTE: Hold ensured as completed by condition check at the beginning of suspend routine.
|
|
if (sys.spindle_stop_ovr) {
|
|
// Handles beginning of spindle stop
|
|
if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_INITIATE) {
|
|
if (gc_state.modal.spindle != SPINDLE_DISABLE) {
|
|
spindle_set_state(SPINDLE_DISABLE,0.0); // De-energize
|
|
sys.spindle_stop_ovr = SPINDLE_STOP_OVR_ENABLED; // Set stop override state to enabled, if de-energized.
|
|
} else {
|
|
sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; // Clear stop override state
|
|
}
|
|
// Handles restoring of spindle state
|
|
} else if (sys.spindle_stop_ovr & (SPINDLE_STOP_OVR_RESTORE | SPINDLE_STOP_OVR_RESTORE_CYCLE)) {
|
|
if (gc_state.modal.spindle != SPINDLE_DISABLE) {
|
|
report_feedback_message(MESSAGE_SPINDLE_RESTORE);
|
|
if (bit_istrue(settings.flags,BITFLAG_LASER_MODE)) {
|
|
// When in laser mode, ignore spindle spin-up delay. Set to turn on laser when cycle starts.
|
|
bit_true(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM);
|
|
} else {
|
|
spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed);
|
|
}
|
|
}
|
|
if (sys.spindle_stop_ovr & SPINDLE_STOP_OVR_RESTORE_CYCLE) {
|
|
system_set_exec_state_flag(EXEC_CYCLE_START); // Set to resume program.
|
|
}
|
|
sys.spindle_stop_ovr = SPINDLE_STOP_OVR_DISABLED; // Clear stop override state
|
|
}
|
|
} else {
|
|
// Handles spindle state during hold. NOTE: Spindle speed overrides may be altered during hold state.
|
|
// NOTE: STEP_CONTROL_UPDATE_SPINDLE_PWM is automatically reset upon resume in step generator.
|
|
if (bit_istrue(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM)) {
|
|
spindle_set_state((restore_condition & (PL_COND_FLAG_SPINDLE_CW | PL_COND_FLAG_SPINDLE_CCW)), restore_spindle_speed);
|
|
bit_false(sys.step_control, STEP_CONTROL_UPDATE_SPINDLE_PWM);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
protocol_exec_rt_system();
|
|
|
|
}
|
|
}
|