b3a53a4683
- Tons of new stuff in this release, which is fairly stable and well tested. However, much more is coming soon! - Real-time parking motion with safety door. When this compile option is enabled, an opened safety door will cause Grbl to automatically feed hold, retract, de-energize the spindle/coolant, and parks near Z max. After the door is closed and resume is commanded, this reverses and the program continues as if nothing happened. This is also highly configurable. See config.h for details. - New spindle max and min rpm ‘$’ settings! This has been requested often. Grbl will output 5V when commanded to turn on the spindle at its max rpm, and 0.02V with min rpm. The voltage and the rpm range are linear to each other. This should help users tweak their settings to get close to true rpm’s. - If the new max rpm ‘$’ setting is set = 0 or less than min rpm, the spindle speed PWM pin will act like a regular on/off spindle enable pin. On pin D11. - BEWARE: Your old EEPROM settings will be wiped! The new spindle rpm settings require a new settings version, so Grbl will automatically wipe and restore the EEPROM with the new defaults. - Control pin can now be inverted individually with a CONTROL_INVERT_MASK in the cpu_map header file. Not typical for users to need this, but handy to have. - Fixed bug when Grbl receive too many characters in a line and overflows. Previously it would respond with an error per overflow character and another acknowledge upon an EOL character. This broke the streaming protocol. Now fixed to only respond with an error after an EOL character. - Fixed a bug with the safety door during an ALARM mode. You now can’t home or unlock the axes until the safety door has been closed. This is for safety reasons (obviously.) - Tweaked some the Mega2560 cpu_map settings . Increased segment buffer size and fixed the spindle PWM settings to output at a higher PWM frequency. - Generalized the delay function used by G4 delay for use by parking motion. Allows non-blocking status reports and real-time control during re-energizing of the spindle and coolant. - Added spindle rpm max and min defaults to default.h files. - Added a new print float for rpm values.
352 lines
15 KiB
C
352 lines
15 KiB
C
/*
|
|
limits.c - code pertaining to limit-switches and performing the homing cycle
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2012-2015 Sungeun K. Jeon
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "grbl.h"
|
|
|
|
|
|
// Homing axis search distance multiplier. Computed by this value times the cycle travel.
|
|
#ifndef HOMING_AXIS_SEARCH_SCALAR
|
|
#define HOMING_AXIS_SEARCH_SCALAR 1.5 // Must be > 1 to ensure limit switch will be engaged.
|
|
#endif
|
|
#ifndef HOMING_AXIS_LOCATE_SCALAR
|
|
#define HOMING_AXIS_LOCATE_SCALAR 5.0 // Must be > 1 to ensure limit switch is cleared.
|
|
#endif
|
|
|
|
void limits_init()
|
|
{
|
|
LIMIT_DDR &= ~(LIMIT_MASK); // Set as input pins
|
|
|
|
#ifdef DISABLE_LIMIT_PIN_PULL_UP
|
|
LIMIT_PORT &= ~(LIMIT_MASK); // Normal low operation. Requires external pull-down.
|
|
#else
|
|
LIMIT_PORT |= (LIMIT_MASK); // Enable internal pull-up resistors. Normal high operation.
|
|
#endif
|
|
|
|
if (bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE)) {
|
|
LIMIT_PCMSK |= LIMIT_MASK; // Enable specific pins of the Pin Change Interrupt
|
|
PCICR |= (1 << LIMIT_INT); // Enable Pin Change Interrupt
|
|
} else {
|
|
limits_disable();
|
|
}
|
|
|
|
#ifdef ENABLE_SOFTWARE_DEBOUNCE
|
|
MCUSR &= ~(1<<WDRF);
|
|
WDTCSR |= (1<<WDCE) | (1<<WDE);
|
|
WDTCSR = (1<<WDP0); // Set time-out at ~32msec.
|
|
#endif
|
|
}
|
|
|
|
|
|
// Disables hard limits.
|
|
void limits_disable()
|
|
{
|
|
LIMIT_PCMSK &= ~LIMIT_MASK; // Disable specific pins of the Pin Change Interrupt
|
|
PCICR &= ~(1 << LIMIT_INT); // Disable Pin Change Interrupt
|
|
}
|
|
|
|
|
|
// Returns limit state as a bit-wise uint8 variable. Each bit indicates an axis limit, where
|
|
// triggered is 1 and not triggered is 0. Invert mask is applied. Axes are defined by their
|
|
// number in bit position, i.e. Z_AXIS is (1<<2) or bit 2, and Y_AXIS is (1<<1) or bit 1.
|
|
uint8_t limits_get_state()
|
|
{
|
|
uint8_t limit_state = 0;
|
|
uint8_t pin = (LIMIT_PIN & LIMIT_MASK);
|
|
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { pin ^= LIMIT_MASK; }
|
|
if (pin) {
|
|
uint8_t idx;
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
if (pin & get_limit_pin_mask(idx)) { limit_state |= (1 << idx); }
|
|
}
|
|
}
|
|
return(limit_state);
|
|
}
|
|
|
|
|
|
// This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing
|
|
// limit switch can cause a lot of problems, like false readings and multiple interrupt calls.
|
|
// If a switch is triggered at all, something bad has happened and treat it as such, regardless
|
|
// if a limit switch is being disengaged. It's impossible to reliably tell the state of a
|
|
// bouncing pin without a debouncing method. A simple software debouncing feature may be enabled
|
|
// through the config.h file, where an extra timer delays the limit pin read by several milli-
|
|
// seconds to help with, not fix, bouncing switches.
|
|
// NOTE: Do not attach an e-stop to the limit pins, because this interrupt is disabled during
|
|
// homing cycles and will not respond correctly. Upon user request or need, there may be a
|
|
// special pinout for an e-stop, but it is generally recommended to just directly connect
|
|
// your e-stop switch to the Arduino reset pin, since it is the most correct way to do this.
|
|
#ifndef ENABLE_SOFTWARE_DEBOUNCE
|
|
ISR(LIMIT_INT_vect) // DEFAULT: Limit pin change interrupt process.
|
|
{
|
|
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
|
|
// When in the alarm state, Grbl should have been reset or will force a reset, so any pending
|
|
// moves in the planner and serial buffers are all cleared and newly sent blocks will be
|
|
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
|
|
// limit setting if their limits are constantly triggering after a reset and move their axes.
|
|
if (sys.state != STATE_ALARM) {
|
|
if (!(sys.rt_exec_alarm)) {
|
|
#ifdef HARD_LIMIT_FORCE_STATE_CHECK
|
|
// Check limit pin state.
|
|
if (limits_get_state()) {
|
|
mc_reset(); // Initiate system kill.
|
|
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
|
|
}
|
|
#else
|
|
mc_reset(); // Initiate system kill.
|
|
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#else // OPTIONAL: Software debounce limit pin routine.
|
|
// Upon limit pin change, enable watchdog timer to create a short delay.
|
|
ISR(LIMIT_INT_vect) { if (!(WDTCSR & (1<<WDIE))) { WDTCSR |= (1<<WDIE); } }
|
|
ISR(WDT_vect) // Watchdog timer ISR
|
|
{
|
|
WDTCSR &= ~(1<<WDIE); // Disable watchdog timer.
|
|
if (sys.state != STATE_ALARM) { // Ignore if already in alarm state.
|
|
if (!(sys.rt_exec_alarm)) {
|
|
// Check limit pin state.
|
|
if (limits_get_state()) {
|
|
mc_reset(); // Initiate system kill.
|
|
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate hard limit critical event
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
// Homes the specified cycle axes, sets the machine position, and performs a pull-off motion after
|
|
// completing. Homing is a special motion case, which involves rapid uncontrolled stops to locate
|
|
// the trigger point of the limit switches. The rapid stops are handled by a system level axis lock
|
|
// mask, which prevents the stepper algorithm from executing step pulses. Homing motions typically
|
|
// circumvent the processes for executing motions in normal operation.
|
|
// NOTE: Only the abort realtime command can interrupt this process.
|
|
// TODO: Move limit pin-specific calls to a general function for portability.
|
|
void limits_go_home(uint8_t cycle_mask)
|
|
{
|
|
if (sys.abort) { return; } // Block if system reset has been issued.
|
|
|
|
// Initialize
|
|
uint8_t n_cycle = (2*N_HOMING_LOCATE_CYCLE+1);
|
|
uint8_t step_pin[N_AXIS];
|
|
float target[N_AXIS];
|
|
float max_travel = 0.0;
|
|
uint8_t idx;
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
// Initialize step pin masks
|
|
step_pin[idx] = get_step_pin_mask(idx);
|
|
#ifdef COREXY
|
|
if ((idx==A_MOTOR)||(idx==B_MOTOR)) { step_pin[idx] = (get_step_pin_mask(X_AXIS)|get_step_pin_mask(Y_AXIS)); }
|
|
#endif
|
|
|
|
if (bit_istrue(cycle_mask,bit(idx))) {
|
|
// Set target based on max_travel setting. Ensure homing switches engaged with search scalar.
|
|
// NOTE: settings.max_travel[] is stored as a negative value.
|
|
max_travel = max(max_travel,(-HOMING_AXIS_SEARCH_SCALAR)*settings.max_travel[idx]);
|
|
}
|
|
}
|
|
|
|
// Set search mode with approach at seek rate to quickly engage the specified cycle_mask limit switches.
|
|
bool approach = true;
|
|
float homing_rate = settings.homing_seek_rate;
|
|
|
|
uint8_t limit_state, axislock, n_active_axis;
|
|
do {
|
|
|
|
system_convert_array_steps_to_mpos(target,sys.position);
|
|
|
|
// Initialize and declare variables needed for homing routine.
|
|
axislock = 0;
|
|
n_active_axis = 0;
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
// Set target location for active axes and setup computation for homing rate.
|
|
if (bit_istrue(cycle_mask,bit(idx))) {
|
|
n_active_axis++;
|
|
sys.position[idx] = 0;
|
|
// Set target direction based on cycle mask and homing cycle approach state.
|
|
// NOTE: This happens to compile smaller than any other implementation tried.
|
|
if (bit_istrue(settings.homing_dir_mask,bit(idx))) {
|
|
if (approach) { target[idx] = -max_travel; }
|
|
else { target[idx] = max_travel; }
|
|
} else {
|
|
if (approach) { target[idx] = max_travel; }
|
|
else { target[idx] = -max_travel; }
|
|
}
|
|
// Apply axislock to the step port pins active in this cycle.
|
|
axislock |= step_pin[idx];
|
|
}
|
|
|
|
}
|
|
homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
|
|
sys.homing_axis_lock = axislock;
|
|
|
|
plan_sync_position(); // Sync planner position to current machine position.
|
|
|
|
// Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle.
|
|
#ifdef USE_LINE_NUMBERS
|
|
plan_buffer_line(target, homing_rate, false, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan homing motion.
|
|
#else
|
|
plan_buffer_line(target, homing_rate, false, false); // Bypass mc_line(). Directly plan homing motion.
|
|
#endif
|
|
|
|
st_prep_buffer(); // Prep and fill segment buffer from newly planned block.
|
|
st_wake_up(); // Initiate motion
|
|
do {
|
|
if (approach) {
|
|
// Check limit state. Lock out cycle axes when they change.
|
|
limit_state = limits_get_state();
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
if (axislock & step_pin[idx]) {
|
|
if (limit_state & (1 << idx)) { axislock &= ~(step_pin[idx]); }
|
|
}
|
|
}
|
|
sys.homing_axis_lock = axislock;
|
|
}
|
|
|
|
st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us.
|
|
|
|
// Exit routines: No time to run protocol_execute_realtime() in this loop.
|
|
if (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_STOP)) {
|
|
// Homing failure: Limit switches are still engaged after pull-off motion
|
|
if ( (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET)) || // Safety door or reset issued
|
|
(!approach && (limits_get_state() & cycle_mask)) || // Limit switch still engaged after pull-off motion
|
|
( approach && (sys.rt_exec_state & EXEC_CYCLE_STOP)) ) { // Limit switch not found during approach.
|
|
mc_reset(); // Stop motors, if they are running.
|
|
protocol_execute_realtime();
|
|
return;
|
|
} else {
|
|
// Pull-off motion complete. Disable CYCLE_STOP from executing.
|
|
bit_false_atomic(sys.rt_exec_state,EXEC_CYCLE_STOP);
|
|
break;
|
|
}
|
|
}
|
|
|
|
} while (STEP_MASK & axislock);
|
|
|
|
st_reset(); // Immediately force kill steppers and reset step segment buffer.
|
|
plan_reset(); // Reset planner buffer to zero planner current position and to clear previous motions.
|
|
|
|
delay_ms(settings.homing_debounce_delay); // Delay to allow transient dynamics to dissipate.
|
|
|
|
// Reverse direction and reset homing rate for locate cycle(s).
|
|
approach = !approach;
|
|
|
|
// After first cycle, homing enters locating phase. Shorten search to pull-off distance.
|
|
if (approach) {
|
|
max_travel = settings.homing_pulloff*HOMING_AXIS_LOCATE_SCALAR;
|
|
homing_rate = settings.homing_feed_rate;
|
|
} else {
|
|
max_travel = settings.homing_pulloff;
|
|
homing_rate = settings.homing_seek_rate;
|
|
}
|
|
|
|
} while (n_cycle-- > 0);
|
|
|
|
// The active cycle axes should now be homed and machine limits have been located. By
|
|
// default, Grbl defines machine space as all negative, as do most CNCs. Since limit switches
|
|
// can be on either side of an axes, check and set axes machine zero appropriately. Also,
|
|
// set up pull-off maneuver from axes limit switches that have been homed. This provides
|
|
// some initial clearance off the switches and should also help prevent them from falsely
|
|
// triggering when hard limits are enabled or when more than one axes shares a limit pin.
|
|
#ifdef COREXY
|
|
int32_t off_axis_position = 0;
|
|
#endif
|
|
int32_t set_axis_position;
|
|
// Set machine positions for homed limit switches. Don't update non-homed axes.
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
// NOTE: settings.max_travel[] is stored as a negative value.
|
|
if (cycle_mask & bit(idx)) {
|
|
#ifdef HOMING_FORCE_SET_ORIGIN
|
|
set_axis_position = 0;
|
|
#else
|
|
if ( bit_istrue(settings.homing_dir_mask,bit(idx)) ) {
|
|
set_axis_position = lround((settings.max_travel[idx]+settings.homing_pulloff)*settings.steps_per_mm[idx]);
|
|
} else {
|
|
set_axis_position = lround(-settings.homing_pulloff*settings.steps_per_mm[idx]);
|
|
}
|
|
#endif
|
|
|
|
#ifdef COREXY
|
|
if (idx==X_AXIS) {
|
|
off_axis_position = (sys.position[B_MOTOR] - sys.position[A_MOTOR])/2;
|
|
sys.position[A_MOTOR] = set_axis_position - off_axis_position;
|
|
sys.position[B_MOTOR] = set_axis_position + off_axis_position;
|
|
} else if (idx==Y_AXIS) {
|
|
off_axis_position = (sys.position[A_MOTOR] + sys.position[B_MOTOR])/2;
|
|
sys.position[A_MOTOR] = off_axis_position - set_axis_position;
|
|
sys.position[B_MOTOR] = off_axis_position + set_axis_position;
|
|
} else {
|
|
sys.position[idx] = set_axis_position;
|
|
}
|
|
#else
|
|
sys.position[idx] = set_axis_position;
|
|
#endif
|
|
|
|
}
|
|
}
|
|
plan_sync_position(); // Sync planner position to homed machine position.
|
|
|
|
// sys.state = STATE_HOMING; // Ensure system state set as homing before returning.
|
|
}
|
|
|
|
|
|
// Performs a soft limit check. Called from mc_line() only. Assumes the machine has been homed,
|
|
// the workspace volume is in all negative space, and the system is in normal operation.
|
|
void limits_soft_check(float *target)
|
|
{
|
|
uint8_t idx;
|
|
uint8_t soft_limit_error = false;
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
|
|
#ifdef HOMING_FORCE_SET_ORIGIN
|
|
// When homing forced set origin is enabled, soft limits checks need to account for directionality.
|
|
// NOTE: max_travel is stored as negative
|
|
if (bit_istrue(settings.homing_dir_mask,bit(idx))) {
|
|
if (target[idx] < 0 || target[idx] > -settings.max_travel[idx]) { soft_limit_error = true; }
|
|
} else {
|
|
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { soft_limit_error = true; }
|
|
}
|
|
#else
|
|
// NOTE: max_travel is stored as negative
|
|
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { soft_limit_error = true; }
|
|
#endif
|
|
|
|
if (soft_limit_error) {
|
|
// Force feed hold if cycle is active. All buffered blocks are guaranteed to be within
|
|
// workspace volume so just come to a controlled stop so position is not lost. When complete
|
|
// enter alarm mode.
|
|
if (sys.state == STATE_CYCLE) {
|
|
bit_true_atomic(sys.rt_exec_state, EXEC_FEED_HOLD);
|
|
do {
|
|
protocol_execute_realtime();
|
|
if (sys.abort) { return; }
|
|
} while ( sys.state != STATE_IDLE );
|
|
}
|
|
|
|
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
|
|
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_SOFT_LIMIT|EXEC_CRITICAL_EVENT)); // Indicate soft limit critical event
|
|
protocol_execute_realtime(); // Execute to enter critical event loop and system abort
|
|
return;
|
|
}
|
|
}
|
|
}
|