grbl-LPC-CoreXY/grbl/main.c
Sonny Jeon b237ad566a File re-organization. New Makefile.
- Re-organized source code files into a ‘grbl’ directory to lessen one
step in compiling Grbl through the Arduino IDE.

- Added an ‘examples’ directory with an upload .INO sketch to further
simplify compiling and uploading Grbl via the Arduino IDE.

- Updated the Makefile with regard to the source code no longer being
in the root directory. All files generated by compiling is placed in a
separate ‘build’ directory to keep things tidy. The makefile should
operate in the same way as it did before.
2015-02-10 19:30:40 -07:00

91 lines
3.3 KiB
C

/*
main.c - An embedded CNC Controller with rs274/ngc (g-code) support
Part of Grbl v0.9
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This file is based on work from Grbl v0.8, distributed under the
terms of the MIT-license. See COPYING for more details.
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011-2012 Sungeun K. Jeon
*/
#include "grbl.h"
// Declare system global variable structure
system_t sys;
int main(void)
{
// Initialize system upon power-up.
serial_init(); // Setup serial baud rate and interrupts
settings_init(); // Load Grbl settings from EEPROM
stepper_init(); // Configure stepper pins and interrupt timers
system_init(); // Configure pinout pins and pin-change interrupt
memset(&sys, 0, sizeof(sys)); // Clear all system variables
sys.abort = true; // Set abort to complete initialization
sei(); // Enable interrupts
// Check for power-up and set system alarm if homing is enabled to force homing cycle
// by setting Grbl's alarm state. Alarm locks out all g-code commands, including the
// startup scripts, but allows access to settings and internal commands. Only a homing
// cycle '$H' or kill alarm locks '$X' will disable the alarm.
// NOTE: The startup script will run after successful completion of the homing cycle, but
// not after disabling the alarm locks. Prevents motion startup blocks from crashing into
// things uncontrollably. Very bad.
#ifdef HOMING_INIT_LOCK
if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) { sys.state = STATE_ALARM; }
#endif
// Grbl initialization loop upon power-up or a system abort. For the latter, all processes
// will return to this loop to be cleanly re-initialized.
for(;;) {
// TODO: Separate configure task that require interrupts to be disabled, especially upon
// a system abort and ensuring any active interrupts are cleanly reset.
// Reset Grbl primary systems.
serial_reset_read_buffer(); // Clear serial read buffer
gc_init(); // Set g-code parser to default state
spindle_init();
coolant_init();
limits_init();
probe_init();
plan_reset(); // Clear block buffer and planner variables
st_reset(); // Clear stepper subsystem variables.
// Sync cleared gcode and planner positions to current system position.
plan_sync_position();
gc_sync_position();
// Reset system variables.
sys.abort = false;
sys.rt_exec_state = 0;
sys.rt_exec_alarm = 0;
if (bit_istrue(settings.flags,BITFLAG_AUTO_START)) { sys.auto_start = true; }
else { sys.auto_start = false; }
// Start Grbl main loop. Processes program inputs and executes them.
protocol_main_loop();
}
return 0; /* Never reached */
}