grbl-LPC-CoreXY/motion_control.c
Simen Svale Skogsrud a9d41c6c64 tweaks and bugfixes
2009-01-29 09:58:29 +01:00

355 lines
12 KiB
C

/*
motion_control.c - cartesian robot controller.
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The structure of this module was inspired by the Arduino GCode_Interpreter by Mike Ellery. The arc
interpolator written from the information provided in the Wikipedia article 'Midpoint circle algorithm'
and the lecture 'Circle Drawing Algorithms' by Leonard McMillan.
http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
http://www.cs.unc.edu/~mcmillan/comp136/Lecture7/circle.html
*/
#include <avr/io.h>
#include "config.h"
#include "motion_control.h"
#include <util/delay.h>
#include <math.h>
#include <stdlib.h>
#include "nuts_bolts.h"
#include "stepper.h"
// position represents the current position of the head measured in steps
// target is the target for the current linear motion
// step_count contains the absolute values of the steps to travel along each axis
// direction is the sign of the motion for each axis (-1: reverse, 0: standby, 1: forward)
#define MODE_AT_REST 0
#define MODE_LINEAR 1
#define MODE_ARC 2
#define MODE_DWELL 3
#define MODE_HOME 4
#define PHASE_HOME_RETURN 0
#define PHASE_HOME_NUDGE 1
#define ONE_MINUTE_OF_MICROSECONDS 60000000
// Parameters when mode is MODE_ARC
struct LinearMotionParameters {
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
uint16_t feed_rate;
int32_t target[3], // The target position in absolute steps
step_count[3], // Absolute steps of travel along each axis
counter[3], // A counter used in the bresenham algorithm for line plotting
maximum_steps; // The larges absolute step-count of any axis
};
struct ArcMotionParameters {
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
uint32_t circle_x, circle_y, target_x, target_y; // current position and target position in the
// local coordinate system of the circle where [0,0] is the
// center of the circle.
int32_t error, x2, y2; // error is always == (circle_x**2 + circle_y**2 - radius**2),
// x2 is always 2*x, y2 is always 2*y
uint8_t axis_x, axis_y; // maps the circle axes to stepper axes
int32_t target[3]; // The target position in absolute steps
};
/* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to
read, but lets us initialize the state of the system by just clearing a single, contigous block of memory.
By overlaying the variables of the different modes in a union we save a few bytes of precious SRAM.
*/
struct MotionControlState {
int8_t mode; // The current operation mode
int32_t position[3]; // The current position of the tool in absolute steps
int32_t pace; // Microseconds between each update in the current mode
union {
struct LinearMotionParameters linear; // variables used in MODE_LINEAR
struct ArcMotionParameters arc; // variables used in MODE_ARC
uint32_t dwell_milliseconds; // variable used in MODE_DWELL
};
};
struct MotionControlState state;
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
void enable_steppers();
void disable_steppers();
void set_direction_bits(int8_t *direction);
inline void step_steppers(uint8_t *enabled);
inline void step_axis(uint8_t axis);
void mc_init()
{
// Initialize state variables
memset(&state, 0, sizeof(state));
}
void mc_dwell(uint32_t milliseconds)
{
st_synchronize();
state.mode = MODE_DWELL;
state.dwell_milliseconds = milliseconds;
state.pace = 1000;
}
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
{
state.mode = MODE_LINEAR;
state.linear.target[X_AXIS] = trunc(x*X_STEPS_PER_MM);
state.linear.target[Y_AXIS] = trunc(y*Y_STEPS_PER_MM);
state.linear.target[Z_AXIS] = trunc(z*Z_STEPS_PER_MM);
uint8_t axis; // loop variable
// Determine direction and travel magnitude for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
state.linear.step_count[axis] = abs(state.linear.target[axis] - state.position[axis]);
state.linear.direction[axis] = sign(state.linear.step_count[axis]);
}
// Find the magnitude of the axis with the longest travel
state.linear.maximum_steps = max(state.linear.step_count[Z_AXIS],
max(state.linear.step_count[X_AXIS], state.linear.step_count[Y_AXIS]));
// Set up a neat counter for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
state.linear.counter[axis] = -state.linear.maximum_steps/2;
}
// Set our direction pins
set_direction_bits(state.linear.direction);
// Calculate the microseconds we need to wait between each step to achieve the desired feed rate
if (invert_feed_rate) {
state.pace =
(feed_rate*1000000)/state.linear.maximum_steps;
} else {
// Ask old Phytagoras how many millimeters our next move is going to take us:
float millimeters_of_travel =
sqrt(pow((X_STEPS_PER_MM*state.linear.step_count[X_AXIS]),2) +
pow((Y_STEPS_PER_MM*state.linear.step_count[Y_AXIS]),2) +
pow((Z_STEPS_PER_MM*state.linear.step_count[Z_AXIS]),2));
state.pace =
((millimeters_of_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / state.linear.maximum_steps;
}
}
void perform_linear_motion()
{
// Flags to keep track of which axes to step
uint8_t step[3];
uint8_t axis; // loop variable
// Trace the line
clear_vector(step);
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
if (state.linear.target[axis] != state.position[axis])
{
state.linear.counter[axis] += state.linear.step_count[axis];
if (state.linear.counter[axis] > 0)
{
step[axis] = true;
state.linear.counter[axis] -= state.linear.maximum_steps;
state.position[axis] += state.linear.direction[axis];
}
}
}
if (step[X_AXIS] | step[Y_AXIS] | step[Z_AXIS]) {
step_steppers(step);
} else {
state.mode = MODE_AT_REST;
}
}
void mc_arc(double theta, double angular_travel, double radius, uint32_t *target)
{
state.mode = MODE_ARC;
// Calculate the initial position and target position in the local coordinate system of the circle
state.arc.circle_x = round(sin(theta)*radius);
state.arc.circle_y = round(cos(theta)*radius);
state.arc.target_x = trunc(sin(theta+angular_travel)*(radius-0.5));
state.arc.target_y = trunc(cos(theta+angular_travel)*(radius-0.5));
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
state.arc.angular_direction = sign(angular_travel);
// The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error
// <0 we are inside the circle, when it is >0 we are outside of the circle, and when it is 0 we
// are exactly on top of the circle.
state.arc.error = round(pow(state.arc.circle_x,2) + pow(state.arc.circle_y,2) - pow(radius,2));
// Because the error-value moves in steps of (+/-)2x+1 and (+/-)2y+1 we save a couple of multiplications
// by keeping track of the doubles of the circle coordinates at all times.
state.arc.x2 = 2*state.arc.circle_x;
state.arc.y2 = 2*state.arc.circle_y;
}
void step_arc_along_x(dx,dy)
{
uint32_t diagonal_error;
state.arc.circle_x+=dx;
state.arc.error += 1+state.arc.x2*dx;
state.arc.x2 += 2*dx;
diagonal_error = state.arc.error + 1 + state.arc.y2*dy;
if(abs(state.arc.error) < abs(diagonal_error)) {
state.arc.circle_y += dy;
state.arc.y2 += 2*dy;
state.arc.error = diagonal_error;
};
}
void step_arc_along_y(dx,dy)
{
uint32_t diagonal_error;
state.arc.circle_y+=dy;
state.arc.error += 1+state.arc.y2*dy;
state.arc.y2 += 2*dy;
diagonal_error = state.arc.error + 1 + state.arc.x2*dx;
if(abs(state.arc.error) < abs(diagonal_error)) {
state.arc.circle_x += dx;
state.arc.x2 += 2*dx;
state.arc.error = diagonal_error;
}
}
/*
Quandrants of the circle
\ 7|0 /
\ | /
6 \|/ 1 y+
---------|-----------
5 /|\ 2 y-
/ | \
x- / 4|3 \ x+ */
int quadrant(uint32_t x,uint32_t y)
{
// determine if the coordinate is in the quadrants 0,3,4 or 7
register int quad0347 = abs(x)<abs(y);
if (x<0) { // quad 4567
if (y<0) { // quad 45
return(quad0347 ? 4 : 5);
} else { // quad 67
return(quad0347 ? 7 : 6);
}
} else {
if (y<0) { // quad 23
return(quad0347 ? 3 : 2);
} else { // quad 01
return(quad0347 ? 0 : 1);
}
}
}
void perform_arc()
{
int q = quadrant(state.arc.circle_x, state.arc.circle_y);
if (state.arc.angular_direction) {
switch (q) {
case 0: while(state.arc.circle_x>state.arc.circle_y) { step_arc_along_x(1,-1); }
case 1: while(state.arc.circle_y>0) { step_arc_along_y(1,-1); }
case 2: while(state.arc.circle_y>-state.arc.circle_x) { step_arc_along_y(-1,-1); }
case 3: while(state.arc.circle_x>0) { step_arc_along_x(-1,-1); }
case 4: while(state.arc.circle_y<state.arc.circle_x) { step_arc_along_x(-1,1); }
case 5: while(state.arc.circle_y<0) { step_arc_along_y(-1,1); }
case 6: while(state.arc.circle_y<-state.arc.circle_x) { step_arc_along_y(1,1); }
case 7: while(state.arc.circle_x<0) { step_arc_along_x(1,1); }
}
} else {
switch (q) {
case 7: while(state.arc.circle_y>-state.arc.circle_x) { step_arc_along_x(-1,-1); }
case 6: while(state.arc.circle_y>0) { step_arc_along_y(-1,-1); }
case 5: while(state.arc.circle_y>state.arc.circle_x) { step_arc_along_y(1,-1); }
case 4: while(state.arc.circle_x<0) { step_arc_along_x(1,-1); }
case 3: while(state.arc.circle_y<-state.arc.circle_x) { step_arc_along_x(1,1); }
case 2: while(state.arc.circle_y<0) { step_arc_along_y(1,1); }
case 1: while(state.arc.circle_y<state.arc.circle_x) { step_arc_along_y(-1,1); }
case 0: while(state.arc.circle_x>0) { step_arc_along_x(-1,1); }
}
}
}
void mc_go_home()
{
state.mode = MODE_HOME;
}
void perform_go_home()
{
st_go_home();
clear_vector(state.position); // By definition this is location [0, 0, 0]
state.mode = MODE_AT_REST;
}
void mc_execute() {
st_set_pace(state.pace);
while(state.mode) {
switch(state.mode) {
case MODE_AT_REST: break;
case MODE_DWELL: _delay_ms(state.dwell_milliseconds); state.mode = MODE_AT_REST; break;
case MODE_LINEAR: perform_linear_motion();
case MODE_HOME: perform_go_home();
}
}
}
int mc_status()
{
return(state.mode);
}
// Set the direction pins for the stepper motors according to the provided vector.
// direction is an array of three 8 bit integers representing the direction of
// each motor. The values should be -1 (reverse), 0 or 1 (forward).
void set_direction_bits(int8_t *direction)
{
/* Sorry about this convoluted code! It uses the fact that bit 7 of each direction
int is set when the direction == -1, but is 0 when direction is forward. This
way we can generate the whole direction bit-mask without doing any comparisions
or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry.
*/
direction_bits = ~(
((direction[X_AXIS]&128)>>(7-X_DIRECTION_BIT)) |
((direction[Y_AXIS]&128)>>(7-Y_DIRECTION_BIT)) |
((direction[Z_AXIS]&128)>>(7-Z_DIRECTION_BIT))
);
}
// Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one
// stepper motor in the order X, Y, Z. Set the bytes of the steppers you want to step to
// 1, and the rest to 0.
inline void step_steppers(uint8_t *enabled)
{
st_buffer_step(direction_bits | enabled[X_AXIS]<<X_STEP_BIT | enabled[Y_AXIS]<<Y_STEP_BIT | enabled[Z_AXIS]<<Z_STEP_BIT);
}
// Step only one motor
inline void step_axis(uint8_t axis)
{
switch (axis) {
case X_AXIS: st_buffer_step(direction_bits | (1<<X_STEP_BIT)); break;
case Y_AXIS: st_buffer_step(direction_bits | (1<<Y_STEP_BIT)); break;
case Z_AXIS: st_buffer_step(direction_bits | (1<<Z_STEP_BIT)); break;
}
}