ed790c9fa2
- Increment to v1.1d due to interface tweaks. - Based on GUI dev feedback, the toggle overrides report was removed and replace with showing “accessory state”. This shows a character if a particular accessory is enabled, like the spindle or flood coolant. These can be directly altered by the toggle overrides, so when they execute, a GUI will be able to observe the state altering as feedback. - Altered the real-time feed rate to show real-time spindle speed as well. It was an over-sight on my part. It’s needed because it’s hard to know what the current spindle speed is when overrides are altering it. Especially during something like a laser cutting job when its important to know how spindle speed overrides are effecting things. - Real-time spindle speed is not shown if VARIABLE_SPINDLE is disabled. The old real-time feed rate data field will show instead. - Compile-time option data is now included in another message immediately following the build info version string, starting with `[OPT:`. A character code follows the data type name with each indicating a particular option enabled or disabled. This will help immensely with debugging Grbl as well as help GUIs know exactly how Grbl was compiled. - These interface changes are detailed in the updated documentation. - Reduced the default planner buffer size from 17 to 16. Needed to free up some memory… - For increasing the serial TX buffer size from 90 to 104 bytes. The addition of real-time spindle speeds and accessory enable data required a bigger buffer. This is to ensure Grbl is performing at optimal levels. - Refactored parts of the spindle and coolant control code to make it more consistent to each other and how it was called. It was a little messy. The changes made it easier to track what each function call was doing based on what was calling it. - Created a couple of new get_state functions for the spindle and coolant. These are called by the accessory state report to look directly at the pin state, rather than track how it was set. This guarantees that the state is reported correctly. - Updated the g-code parser, parking motion, sleep mode, and spindle stop calls to refactored spindle and coolant code. - Added a compile-time option to enable homing individual axes, rather than having only the main homing cycle. The actual use case for this is pretty rare. It’s not recommended you enable this, unless you have a specific application for it. Otherwise, just alter the homing cycle itself. - Refactored the printFloat() function to not show a decimal point if there are no trailing values after it. For example, `1.` now shows `1`. - Fixed an issue regarding spindle speed overrides no being applied to blocks without motions. - Removed the toggle_ovr_mask system variable and replaced with spindle_stop_ovr system variable. Coolant toggles don’t need to be tracked. - Updated README
64 lines
2.5 KiB
C
64 lines
2.5 KiB
C
/*
|
|
motion_control.h - high level interface for issuing motion commands
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef motion_control_h
|
|
#define motion_control_h
|
|
|
|
|
|
// System motion commands must have a line number of zero.
|
|
#define HOMING_CYCLE_LINE_NUMBER 0
|
|
#define PARKING_MOTION_LINE_NUMBER 0
|
|
|
|
#define HOMING_CYCLE_ALL 0 // Must be zero.
|
|
#define HOMING_CYCLE_X bit(X_AXIS)
|
|
#define HOMING_CYCLE_Y bit(Y_AXIS)
|
|
#define HOMING_CYCLE_Z bit(Z_AXIS)
|
|
|
|
|
|
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
|
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
|
|
// (1 minute)/feed_rate time.
|
|
void mc_line(float *target, plan_line_data_t *pl_data);
|
|
|
|
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
|
|
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
|
|
// the direction of helical travel, radius == circle radius, is_clockwise_arc boolean. Used
|
|
// for vector transformation direction.
|
|
void mc_arc(float *target, plan_line_data_t *pl_data, float *position, float *offset, float radius,
|
|
uint8_t axis_0, uint8_t axis_1, uint8_t axis_linear, uint8_t is_clockwise_arc);
|
|
|
|
// Dwell for a specific number of seconds
|
|
void mc_dwell(float seconds);
|
|
|
|
// Perform homing cycle to locate machine zero. Requires limit switches.
|
|
void mc_homing_cycle(uint8_t cycle_mask);
|
|
|
|
// Perform tool length probe cycle. Requires probe switch.
|
|
uint8_t mc_probe_cycle(float *target, plan_line_data_t *pl_data, uint8_t is_probe_away, uint8_t is_no_error);
|
|
|
|
// Plans and executes the single special motion case for parking. Independent of main planner buffer.
|
|
void mc_parking_motion(float *parking_target, plan_line_data_t *pl_data);
|
|
|
|
// Performs system reset. If in motion state, kills all motion and sets system alarm.
|
|
void mc_reset();
|
|
|
|
#endif
|