grbl-LPC-CoreXY/print.c
Sonny Jeon 71f333ddca Settings refactoring. Bug fixes. Misc new features.
This is likely the last major change to the v0.9 code base before push
to master. Only two minor things remain on the agenda (CoreXY support,
force clear EEPROM, and an extremely low federate bug).

- NEW! Grbl is now compile-able and may be flashed directly through the
Arduino IDE. Only minor changes were required for this compatibility.
See the Wiki to learn how to do it.

- New status reporting mask to turn on and off what Grbl sends back.
This includes machine coordinates, work coordinates, serial RX buffer
usage, and planner buffer usage. Expandable to more information on user
request, but that’s it for now.

- Settings have been completely renumbered to allow for future new
settings to be installed without having to constantly reshuffle and
renumber all of the settings every time.

- All settings masks have been standardized to mean bit 0 = X, bit 1 =
Y, and bit 2 = Z, to reduce confusion on how they work. The invert
masks used by the internal Grbl system were updated to accommodate this
change as well.

- New invert probe pin setting, which does what it sounds like.

- Fixed a probing cycle bug, where it would freeze intermittently, and
removed some redundant code.

- Homing may now be set to the origin wherever the limit switches are.
Traditionally machine coordinates should always be in negative space,
but when limit switches on are on the opposite side, the machine
coordinate would be set to -max_travel for the axis. Now you can always
make it [0,0,0] via a compile-time option in config.h. (Soft limits
routine was updated to account for this as well.)

 - Probe coordinate message immediately after a probing cycle may now
be turned off via a compile-time option in config.h. By default the
probing location is always reported.

- Reduced the N_ARC_CORRECTION default value to reflect the changes in
how circles are generated by an arc tolerance, rather than a fixed arc
segment setting.

- Increased the incoming line buffer limit from 70 to 80 characters.
Had some extra memory space to invest into this.

- Fixed a bug where tool number T was not being tracked and reported
correctly.

- Added a print free memory function for debugging purposes. Not used
otherwise.

- Realtime rate report should now work during feed holds, but it hasn’t
been tested yet.

- Updated the streaming scripts with MIT-license and added the simple
streaming to the main stream.py script to allow for settings to be sent.

- Some minor code refactoring to improve flash efficiency. Reduced the
flash by several hundred KB, which was re-invested in some of these new
features.
2014-07-26 15:01:34 -06:00

208 lines
4.9 KiB
C

/*
print.c - Functions for formatting output strings
Part of Grbl
Copyright (c) 2011-2014 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "system.h"
#include "serial.h"
#include "settings.h"
void printString(const char *s)
{
while (*s)
serial_write(*s++);
}
// Print a string stored in PGM-memory
void printPgmString(const char *s)
{
char c;
while ((c = pgm_read_byte_near(s++)))
serial_write(c);
}
// void printIntegerInBase(unsigned long n, unsigned long base)
// {
// unsigned char buf[8 * sizeof(long)]; // Assumes 8-bit chars.
// unsigned long i = 0;
//
// if (n == 0) {
// serial_write('0');
// return;
// }
//
// while (n > 0) {
// buf[i++] = n % base;
// n /= base;
// }
//
// for (; i > 0; i--)
// serial_write(buf[i - 1] < 10 ?
// '0' + buf[i - 1] :
// 'A' + buf[i - 1] - 10);
// }
void print_uint8_base2(uint8_t n)
{
unsigned char buf[8];
uint8_t i = 0;
for (; i < 8; i++) {
buf[i] = n & 1;
n >>= 1;
}
for (; i > 0; i--)
serial_write('0' + buf[i - 1]);
}
void print_uint8_base10(uint8_t n)
{
if (n == 0) {
serial_write('0');
return;
}
unsigned char buf[3];
uint8_t i = 0;
while (n > 0) {
buf[i++] = n % 10 + '0';
n /= 10;
}
for (; i > 0; i--)
serial_write(buf[i - 1]);
}
void print_uint32_base10(unsigned long n)
{
if (n == 0) {
serial_write('0');
return;
}
unsigned char buf[10];
uint8_t i = 0;
while (n > 0) {
buf[i++] = n % 10;
n /= 10;
}
for (; i > 0; i--)
serial_write('0' + buf[i-1]);
}
void printInteger(long n)
{
if (n < 0) {
serial_write('-');
print_uint32_base10((-n));
} else {
print_uint32_base10(n);
}
}
// Convert float to string by immediately converting to a long integer, which contains
// more digits than a float. Number of decimal places, which are tracked by a counter,
// may be set by the user. The integer is then efficiently converted to a string.
// NOTE: AVR '%' and '/' integer operations are very efficient. Bitshifting speed-up
// techniques are actually just slightly slower. Found this out the hard way.
void printFloat(float n, uint8_t decimal_places)
{
if (n < 0) {
serial_write('-');
n = -n;
}
uint8_t decimals = decimal_places;
while (decimals >= 2) { // Quickly convert values expected to be E0 to E-4.
n *= 100;
decimals -= 2;
}
if (decimals) { n *= 10; }
n += 0.5; // Add rounding factor. Ensures carryover through entire value.
// Generate digits backwards and store in string.
unsigned char buf[10];
uint8_t i = 0;
uint32_t a = (long)n;
buf[decimal_places] = '.'; // Place decimal point, even if decimal places are zero.
while(a > 0) {
if (i == decimal_places) { i++; } // Skip decimal point location
buf[i++] = (a % 10) + '0'; // Get digit
a /= 10;
}
while (i < decimal_places) {
buf[i++] = '0'; // Fill in zeros to decimal point for (n < 1)
}
if (i == decimal_places) { // Fill in leading zero, if needed.
i++;
buf[i++] = '0';
}
// Print the generated string.
for (; i > 0; i--)
serial_write(buf[i-1]);
}
// Floating value printing handlers for special variables types used in Grbl and are defined
// in the config.h.
// - CoordValue: Handles all position or coordinate values in inches or mm reporting.
// - RateValue: Handles feed rate and current velocity in inches or mm reporting.
// - SettingValue: Handles all floating point settings values (always in mm.)
void printFloat_CoordValue(float n) {
if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) {
printFloat(n*INCH_PER_MM,N_DECIMAL_COORDVALUE_INCH);
} else {
printFloat(n,N_DECIMAL_COORDVALUE_MM);
}
}
void printFloat_RateValue(float n) {
if (bit_istrue(settings.flags,BITFLAG_REPORT_INCHES)) {
printFloat(n*INCH_PER_MM,N_DECIMAL_RATEVALUE_INCH);
} else {
printFloat(n,N_DECIMAL_RATEVALUE_MM);
}
}
void printFloat_SettingValue(float n) { printFloat(n,N_DECIMAL_SETTINGVALUE); }
// Debug tool to print free memory in bytes at the called point. Not used otherwise.
void printFreeMemory()
{
extern int __heap_start, *__brkval;
uint16_t free; // Up to 64k values.
free = (int) &free - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
printInteger((int32_t)free);
printString(" ");
}