9be7b3d930
- Rudimentary CoreXY kinematics support. Didn’t test, but homing and feed holds should work. See config.h. Please report successes and issues as we find bugs. - G40 (disable cutter comp) is now “supported”. Meaning that Grbl will no longer issue an error when typically sent in g-code program header. - Refactored coolant and spindle state setting into separate functions for future features. - Configuration option for fixing homing behavior when there are two limit switches on the same axis sharing an input pin. - Created a new “grbl.h” that will eventually be used as the main include file for Grbl. Also will help simply uploading through the Arduino IDE - Separated out the alarms execution flags from the realtime (used be called runtime) execution flag variable. Now reports exactly what caused the alarm. Expandable for new alarms later on. - Refactored the homing cycle to support CoreXY. - Applied @EliteEng updates to Mega2560 support. Some pins were reconfigured. - Created a central step to position and vice versa function. Needed for non-traditional cartesian machines. Should make it easier later. - Removed the new CPU map for the Uno. No longer going to used. There will be only one configuration to keep things uniform.
231 lines
10 KiB
C
231 lines
10 KiB
C
/*
|
|
system.c - Handles system level commands and real-time processes
|
|
Part of Grbl v0.9
|
|
|
|
Copyright (c) 2014-2015 Sungeun K. Jeon
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "system.h"
|
|
#include "settings.h"
|
|
#include "protocol.h"
|
|
#include "gcode.h"
|
|
#include "motion_control.h"
|
|
#include "stepper.h"
|
|
#include "report.h"
|
|
#include "print.h"
|
|
|
|
|
|
void system_init()
|
|
{
|
|
PINOUT_DDR &= ~(PINOUT_MASK); // Configure as input pins
|
|
PINOUT_PORT |= PINOUT_MASK; // Enable internal pull-up resistors. Normal high operation.
|
|
PINOUT_PCMSK |= PINOUT_MASK; // Enable specific pins of the Pin Change Interrupt
|
|
PCICR |= (1 << PINOUT_INT); // Enable Pin Change Interrupt
|
|
}
|
|
|
|
|
|
// Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets
|
|
// only the realtime command execute variable to have the main program execute these when
|
|
// its ready. This works exactly like the character-based realtime commands when picked off
|
|
// directly from the incoming serial data stream.
|
|
ISR(PINOUT_INT_vect)
|
|
{
|
|
// Enter only if any pinout pin is actively low.
|
|
if ((PINOUT_PIN & PINOUT_MASK) ^ PINOUT_MASK) {
|
|
if (bit_isfalse(PINOUT_PIN,bit(PIN_RESET))) {
|
|
mc_reset();
|
|
} else if (bit_isfalse(PINOUT_PIN,bit(PIN_FEED_HOLD))) {
|
|
bit_true(sys.rt_exec_state, EXEC_FEED_HOLD);
|
|
} else if (bit_isfalse(PINOUT_PIN,bit(PIN_CYCLE_START))) {
|
|
bit_true(sys.rt_exec_state, EXEC_CYCLE_START);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Executes user startup script, if stored.
|
|
void system_execute_startup(char *line)
|
|
{
|
|
uint8_t n;
|
|
for (n=0; n < N_STARTUP_LINE; n++) {
|
|
if (!(settings_read_startup_line(n, line))) {
|
|
report_status_message(STATUS_SETTING_READ_FAIL);
|
|
} else {
|
|
if (line[0] != 0) {
|
|
printString(line); // Echo startup line to indicate execution.
|
|
report_status_message(gc_execute_line(line));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Directs and executes one line of formatted input from protocol_process. While mostly
|
|
// incoming streaming g-code blocks, this also executes Grbl internal commands, such as
|
|
// settings, initiating the homing cycle, and toggling switch states. This differs from
|
|
// the realtime command module by being susceptible to when Grbl is ready to execute the
|
|
// next line during a cycle, so for switches like block delete, the switch only effects
|
|
// the lines that are processed afterward, not necessarily real-time during a cycle,
|
|
// since there are motions already stored in the buffer. However, this 'lag' should not
|
|
// be an issue, since these commands are not typically used during a cycle.
|
|
uint8_t system_execute_line(char *line)
|
|
{
|
|
uint8_t char_counter = 1;
|
|
uint8_t helper_var = 0; // Helper variable
|
|
float parameter, value;
|
|
switch( line[char_counter] ) {
|
|
case 0 : report_grbl_help(); break;
|
|
case '$' : // Prints Grbl settings
|
|
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
|
if ( sys.state & (STATE_CYCLE | STATE_HOLD) ) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print.
|
|
else { report_grbl_settings(); }
|
|
break;
|
|
case 'G' : // Prints gcode parser state
|
|
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
|
else { report_gcode_modes(); }
|
|
break;
|
|
case 'C' : // Set check g-code mode [IDLE/CHECK]
|
|
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
|
// Perform reset when toggling off. Check g-code mode should only work if Grbl
|
|
// is idle and ready, regardless of alarm locks. This is mainly to keep things
|
|
// simple and consistent.
|
|
if ( sys.state == STATE_CHECK_MODE ) {
|
|
mc_reset();
|
|
report_feedback_message(MESSAGE_DISABLED);
|
|
} else {
|
|
if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode.
|
|
sys.state = STATE_CHECK_MODE;
|
|
report_feedback_message(MESSAGE_ENABLED);
|
|
}
|
|
break;
|
|
case 'X' : // Disable alarm lock [ALARM]
|
|
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
|
if (sys.state == STATE_ALARM) {
|
|
report_feedback_message(MESSAGE_ALARM_UNLOCK);
|
|
sys.state = STATE_IDLE;
|
|
// Don't run startup script. Prevents stored moves in startup from causing accidents.
|
|
} // Otherwise, no effect.
|
|
break;
|
|
// case 'J' : break; // Jogging methods
|
|
// TODO: Here jogging can be placed for execution as a seperate subprogram. It does not need to be
|
|
// susceptible to other realtime commands except for e-stop. The jogging function is intended to
|
|
// be a basic toggle on/off with controlled acceleration and deceleration to prevent skipped
|
|
// steps. The user would supply the desired feedrate, axis to move, and direction. Toggle on would
|
|
// start motion and toggle off would initiate a deceleration to stop. One could 'feather' the
|
|
// motion by repeatedly toggling to slow the motion to the desired location. Location data would
|
|
// need to be updated real-time and supplied to the user through status queries.
|
|
// More controlled exact motions can be taken care of by inputting G0 or G1 commands, which are
|
|
// handled by the planner. It would be possible for the jog subprogram to insert blocks into the
|
|
// block buffer without having the planner plan them. It would need to manage de/ac-celerations
|
|
// on its own carefully. This approach could be effective and possibly size/memory efficient.
|
|
default :
|
|
// Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing)
|
|
if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); }
|
|
switch( line[char_counter] ) {
|
|
case '#' : // Print Grbl NGC parameters
|
|
if ( line[++char_counter] != 0 ) { return(STATUS_INVALID_STATEMENT); }
|
|
else { report_ngc_parameters(); }
|
|
break;
|
|
case 'H' : // Perform homing cycle [IDLE/ALARM]
|
|
if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) {
|
|
sys.state = STATE_HOMING; // Set system state variable
|
|
// Only perform homing if Grbl is idle or lost.
|
|
mc_homing_cycle();
|
|
if (!sys.abort) { // Execute startup scripts after successful homing.
|
|
sys.state = STATE_IDLE; // Set to IDLE when complete.
|
|
st_go_idle(); // Set steppers to the settings idle state before returning.
|
|
system_execute_startup(line);
|
|
}
|
|
} else { return(STATUS_SETTING_DISABLED); }
|
|
break;
|
|
case 'I' : // Print or store build info. [IDLE/ALARM]
|
|
if ( line[++char_counter] == 0 ) {
|
|
settings_read_build_info(line);
|
|
report_build_info(line);
|
|
} else { // Store startup line [IDLE/ALARM]
|
|
if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
|
|
helper_var = char_counter; // Set helper variable as counter to start of user info line.
|
|
do {
|
|
line[char_counter-helper_var] = line[char_counter];
|
|
} while (line[char_counter++] != 0);
|
|
settings_store_build_info(line);
|
|
}
|
|
break;
|
|
case 'N' : // Startup lines. [IDLE/ALARM]
|
|
if ( line[++char_counter] == 0 ) { // Print startup lines
|
|
for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) {
|
|
if (!(settings_read_startup_line(helper_var, line))) {
|
|
report_status_message(STATUS_SETTING_READ_FAIL);
|
|
} else {
|
|
report_startup_line(helper_var,line);
|
|
}
|
|
}
|
|
break;
|
|
} else { // Store startup line [IDLE Only] Prevents motion during ALARM.
|
|
if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle.
|
|
helper_var = true; // Set helper_var to flag storing method.
|
|
// No break. Continues into default: to read remaining command characters.
|
|
}
|
|
default : // Storing setting methods [IDLE/ALARM]
|
|
if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); }
|
|
if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); }
|
|
if (helper_var) { // Store startup line
|
|
// Prepare sending gcode block to gcode parser by shifting all characters
|
|
helper_var = char_counter; // Set helper variable as counter to start of gcode block
|
|
do {
|
|
line[char_counter-helper_var] = line[char_counter];
|
|
} while (line[char_counter++] != 0);
|
|
// Execute gcode block to ensure block is valid.
|
|
helper_var = gc_execute_line(line); // Set helper_var to returned status code.
|
|
if (helper_var) { return(helper_var); }
|
|
else {
|
|
helper_var = trunc(parameter); // Set helper_var to int value of parameter
|
|
settings_store_startup_line(helper_var,line);
|
|
}
|
|
} else { // Store global setting.
|
|
if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); }
|
|
if((line[char_counter] != 0) || (parameter > 255)) { return(STATUS_INVALID_STATEMENT); }
|
|
return(settings_store_global_setting((uint8_t)parameter, value));
|
|
}
|
|
}
|
|
}
|
|
return(STATUS_OK); // If '$' command makes it to here, then everything's ok.
|
|
}
|
|
|
|
|
|
float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx)
|
|
{
|
|
#ifdef COREXY
|
|
if (idx==A_MOTOR) {
|
|
return((0.5*(steps[A_MOTOR] + steps[B_MOTOR]))/settings.steps_per_mm[idx]);
|
|
} else if (idx==B_MOTOR) {
|
|
return((0.5*(steps[A_MOTOR] - steps[B_MOTOR]))/settings.steps_per_mm[idx]);
|
|
}
|
|
#else
|
|
return((float)steps[idx]/settings.steps_per_mm[idx]);
|
|
#endif
|
|
}
|
|
|
|
|
|
void system_convert_array_steps_to_mpos(float *position, int32_t *steps)
|
|
{
|
|
uint8_t idx;
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
position[idx] = system_convert_axis_steps_to_mpos(steps, idx);
|
|
}
|
|
return;
|
|
}
|