grbl-LPC-CoreXY/spindle_control.c
Sonny Jeon 9be7b3d930 Lot of refactoring for the future. CoreXY support.
- Rudimentary CoreXY kinematics support. Didn’t test, but homing and
feed holds should work. See config.h. Please report successes and
issues as we find bugs.

- G40 (disable cutter comp) is now “supported”. Meaning that Grbl will
no longer issue an error when typically sent in g-code program header.

- Refactored coolant and spindle state setting into separate functions
for future features.

- Configuration option for fixing homing behavior when there are two
limit switches on the same axis sharing an input pin.

- Created a new “grbl.h” that will eventually be used as the main
include file for Grbl. Also will help simply uploading through the
Arduino IDE

- Separated out the alarms execution flags from the realtime (used be
called runtime) execution flag variable. Now reports exactly what
caused the alarm. Expandable for new alarms later on.

- Refactored the homing cycle to support CoreXY.

- Applied @EliteEng updates to Mega2560 support. Some pins were
reconfigured.

- Created a central step to position and vice versa function. Needed
for non-traditional cartesian machines. Should make it easier later.

- Removed the new CPU map for the Uno. No longer going to used. There
will be only one configuration to keep things uniform.
2015-01-14 22:14:52 -07:00

120 lines
3.9 KiB
C

/*
spindle_control.c - spindle control methods
Part of Grbl v0.9
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This file is based on work from Grbl v0.8, distributed under the
terms of the MIT-license. See COPYING for more details.
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2012 Sungeun K. Jeon
*/
#include "system.h"
#include "spindle_control.h"
#include "protocol.h"
#include "gcode.h"
void spindle_init()
{
// On the Uno, spindle enable and PWM are shared. Other CPUs have seperate enable pin.
#ifdef VARIABLE_SPINDLE
SPINDLE_PWM_DDR |= (1<<SPINDLE_PWM_BIT); // Configure as PWM output pin.
#ifndef CPU_MAP_ATMEGA328P
SPINDLE_ENABLE_DDR |= (1<<SPINDLE_ENABLE_BIT); // Configure as output pin.
#endif
#else
SPINDLE_ENABLE_DDR |= (1<<SPINDLE_ENABLE_BIT); // Configure as output pin.
#endif
SPINDLE_DIRECTION_DDR |= (1<<SPINDLE_DIRECTION_BIT); // Configure as output pin.
spindle_stop();
}
void spindle_stop()
{
// On the Uno, spindle enable and PWM are shared. Other CPUs have seperate enable pin.
#ifdef VARIABLE_SPINDLE
TCCRA_REGISTER &= ~(1<<COMB_BIT); // Disable PWM. Output voltage is zero.
#ifndef CPU_MAP_ATMEGA328P
SPINDLE_ENABLE_PORT &= ~(1<<SPINDLE_ENABLE_BIT); // Set pin to low.
#endif
#else
SPINDLE_ENABLE_PORT &= ~(1<<SPINDLE_ENABLE_BIT); // Set pin to low.
#endif
}
void spindle_set_state(uint8_t state, float rpm)
{
// Halt or set spindle direction and rpm.
if (state == SPINDLE_DISABLE) {
spindle_stop();
} else {
if (state == SPINDLE_ENABLE_CW) {
SPINDLE_DIRECTION_PORT &= ~(1<<SPINDLE_DIRECTION_BIT);
} else {
SPINDLE_DIRECTION_PORT |= (1<<SPINDLE_DIRECTION_BIT);
}
#ifdef VARIABLE_SPINDLE
// TODO: Install the optional capability for frequency-based output for servos.
#ifdef CPU_MAP_ATMEGA2560
TCCRA_REGISTER = (1<<COMB_BIT) | (1<<WAVE1_REGISTER) | (1<<WAVE0_REGISTER);
TCCRB_REGISTER = (TCCRB_REGISTER & 0b11111000) | 0x02 | (1<<WAVE2_REGISTER) | (1<<WAVE3_REGISTER); // set to 1/8 Prescaler
OCR4A = 0xFFFF; // set the top 16bit value
uint16_t current_pwm;
#else
TCCRA_REGISTER = (1<<COMB_BIT) | (1<<WAVE1_REGISTER) | (1<<WAVE0_REGISTER);
TCCRB_REGISTER = (TCCRB_REGISTER & 0b11111000) | 0x02; // set to 1/8 Prescaler
uint8_t current_pwm;
#endif
#define SPINDLE_RPM_RANGE (SPINDLE_MAX_RPM-SPINDLE_MIN_RPM)
if ( rpm < SPINDLE_MIN_RPM ) { rpm = 0; }
else {
rpm -= SPINDLE_MIN_RPM;
if ( rpm > SPINDLE_RPM_RANGE ) { rpm = SPINDLE_RPM_RANGE; } // Prevent integer overflow
}
current_pwm = floor( rpm*(PWM_MAX_VALUE/SPINDLE_RPM_RANGE) + 0.5);
#ifdef MINIMUM_SPINDLE_PWM
if (current_pwm < MINIMUM_SPINDLE_PWM) { current_pwm = MINIMUM_SPINDLE_PWM; }
#endif
OCR_REGISTER = current_pwm; // Set PWM pin output
#ifdef CPU_MAP_ATMEGA2560 // On the Uno, spindle enable and PWM are shared.
SPINDLE_ENABLE_PORT |= (1<<SPINDLE_ENABLE_BIT);
#endif
#else
SPINDLE_ENABLE_PORT |= (1<<SPINDLE_ENABLE_BIT);
#endif
}
}
void spindle_run(uint8_t state, float rpm)
{
if (sys.state != STATE_CHECK_MODE) { return; }
protocol_buffer_synchronize(); // Empty planner buffer to ensure spindle is set when programmed.
spindle_set_state(state, rpm);
}