160 lines
4.5 KiB
C
160 lines
4.5 KiB
C
/*
|
|
nuts_bolts.c - Shared functions
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "grbl.h"
|
|
|
|
|
|
#define MAX_INT_DIGITS 8 // Maximum number of digits in int32 (and float)
|
|
|
|
|
|
// Extracts a floating point value from a string. The following code is based loosely on
|
|
// the avr-libc strtod() function by Michael Stumpf and Dmitry Xmelkov and many freely
|
|
// available conversion method examples, but has been highly optimized for Grbl. For known
|
|
// CNC applications, the typical decimal value is expected to be in the range of E0 to E-4.
|
|
// Scientific notation is officially not supported by g-code, and the 'E' character may
|
|
// be a g-code word on some CNC systems. So, 'E' notation will not be recognized.
|
|
// NOTE: Thanks to Radu-Eosif Mihailescu for identifying the issues with using strtod().
|
|
uint8_t read_float(char *line, uint8_t *char_counter, float *float_ptr)
|
|
{
|
|
char *ptr = line + *char_counter;
|
|
unsigned char c;
|
|
|
|
// Grab first character and increment pointer. No spaces assumed in line.
|
|
c = *ptr++;
|
|
|
|
// Capture initial positive/minus character
|
|
bool isnegative = false;
|
|
if (c == '-') {
|
|
isnegative = true;
|
|
c = *ptr++;
|
|
} else if (c == '+') {
|
|
c = *ptr++;
|
|
}
|
|
|
|
// Extract number into fast integer. Track decimal in terms of exponent value.
|
|
uint32_t intval = 0;
|
|
int8_t exp = 0;
|
|
uint8_t ndigit = 0;
|
|
bool isdecimal = false;
|
|
while(1) {
|
|
c -= '0';
|
|
if (c <= 9) {
|
|
ndigit++;
|
|
if (ndigit <= MAX_INT_DIGITS) {
|
|
if (isdecimal) { exp--; }
|
|
intval = (((intval << 2) + intval) << 1) + c; // intval*10 + c
|
|
} else {
|
|
if (!(isdecimal)) { exp++; } // Drop overflow digits
|
|
}
|
|
} else if (c == (('.'-'0') & 0xff) && !(isdecimal)) {
|
|
isdecimal = true;
|
|
} else {
|
|
break;
|
|
}
|
|
c = *ptr++;
|
|
}
|
|
|
|
// Return if no digits have been read.
|
|
if (!ndigit) { return(false); };
|
|
|
|
// Convert integer into floating point.
|
|
float fval;
|
|
fval = (float)intval;
|
|
|
|
// Apply decimal. Should perform no more than two floating point multiplications for the
|
|
// expected range of E0 to E-4.
|
|
if (fval != 0) {
|
|
while (exp <= -2) {
|
|
fval *= 0.01;
|
|
exp += 2;
|
|
}
|
|
if (exp < 0) {
|
|
fval *= 0.1;
|
|
} else if (exp > 0) {
|
|
do {
|
|
fval *= 10.0;
|
|
} while (--exp > 0);
|
|
}
|
|
}
|
|
|
|
// Assign floating point value with correct sign.
|
|
if (isnegative) {
|
|
*float_ptr = -fval;
|
|
} else {
|
|
*float_ptr = fval;
|
|
}
|
|
|
|
*char_counter = ptr - line - 1; // Set char_counter to next statement
|
|
|
|
return(true);
|
|
}
|
|
|
|
|
|
// Non-blocking delay function used for general operation and suspend features.
|
|
void delay_sec(float seconds, uint8_t mode)
|
|
{
|
|
uint16_t i = ceil(1000/DWELL_TIME_STEP*seconds);
|
|
while (i-- > 0) {
|
|
if (sys.abort) { return; }
|
|
if (mode == DELAY_MODE_DWELL) {
|
|
protocol_execute_realtime();
|
|
} else { // DELAY_MODE_SYS_SUSPEND
|
|
// Execute rt_system() only to avoid nesting suspend loops.
|
|
protocol_exec_rt_system();
|
|
if (sys.suspend & SUSPEND_RESTART_RETRACT) { return; } // Bail, if safety door reopens.
|
|
}
|
|
delay_ms(DWELL_TIME_STEP); // Delay DWELL_TIME_STEP increment
|
|
}
|
|
}
|
|
|
|
|
|
// Simple hypotenuse computation function.
|
|
float hypot_f(float x, float y) { return(sqrt(x*x + y*y)); }
|
|
|
|
|
|
float convert_delta_vector_to_unit_vector(float *vector)
|
|
{
|
|
uint8_t idx;
|
|
float magnitude = 0.0;
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
if (vector[idx] != 0.0) {
|
|
magnitude += vector[idx]*vector[idx];
|
|
}
|
|
}
|
|
magnitude = sqrt(magnitude);
|
|
float inv_magnitude = 1.0/magnitude;
|
|
for (idx=0; idx<N_AXIS; idx++) { vector[idx] *= inv_magnitude; }
|
|
return(magnitude);
|
|
}
|
|
|
|
|
|
float limit_value_by_axis_maximum(float *max_value, float *unit_vec)
|
|
{
|
|
uint8_t idx;
|
|
float limit_value = SOME_LARGE_VALUE;
|
|
for (idx=0; idx<N_AXIS; idx++) {
|
|
if (unit_vec[idx] != 0) { // Avoid divide by zero.
|
|
limit_value = min(limit_value,fabs(max_value[idx]/unit_vec[idx]));
|
|
}
|
|
}
|
|
return(limit_value);
|
|
}
|